这次的作业为Logistic Regression的具体实现。 1 Logistic Regression 1.2 Implementatiion 1.2.1 Warm up 既然都说是热身了,那么也就一扫而过吧。在sigmoid.m中添加如下代码: g = 1./(1 + e.^-z); 这段代码就是sigmoid函数的具体实现,对矩阵同样适用。 1
这次的作业为Logistic Regression的具体实现。
1 Logistic Regression
1.2 Implementatiion
1.2.1 Warm up
既然都说是热身了,那么也就一扫而过吧。在sigmoid.m中添加如下代码:
g = 1./(1 + e.^-z);
这段代码就是sigmoid函数的具体实现,对矩阵同样适用。
1.2.2 Cost Function and gradient
和ex1类似,接下里就是实现代价函数和梯度下降的公式,只要注意好矩阵的操作即可,在costfunction.m中添加如下代码:
Hx = sigmoid(X * theta); J = 1/m * (-y'*log(Hx)-(1-y')*log(1-Hx)); grad = 1/m * ((Hx - y)' * X);
1.2.3 Learning paramters using fminunc
并无需要我们自己写的代码,只是讲解了一下如何使用octave自带的fminunc来找到使得代价函数J最小的参数θ,给出的具体代码如下:
% Set options for fminunc options = optimset('GradObj', 'on', 'MaxIter', 400); % Run fminunc to obtain the optimal theta % This function will return theta and the cost [theta, cost] = ... fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);稍微解释一下这段代码,第一句话是在设置fminunc的一些参数,把'GradObj'这个参数设置为on,这样就告诉了fminunc函数要同时返回具体的代价函数的值和梯度,也让fminunc函数在寻找最小化参数的时候可以使用梯度;后面把'MaxIter'参数设置为400,这样fminunc函数最多迭代400次。第二句话就是在具体调用fminunc函数,@(t)可以认为是将我们的代价函数作为一个参数传递了进去,t在代价函数中的位置就是theta的位置。
最后fminunc函数返回的参数构成的直线分割的效果如下:
1.2.4 Evaluating logistic regression
可以看到我们已经完成了找到那条最好的划分曲线,那么我们将如何来评价我们找到的这条曲线的好坏呢?一种方法就是用这条曲线来对所有训练集中的元组进行判断,统计其正确率,于是我们在predict.m中添加如下代码:
Hx = sigmoid(X * theta); for iter = 1:m if Hx(iter) >= 0.5 p(iter) = 1; else p(iter) = 0; end; end;这里是一个简单的循环,把结果根据阀值0.5进行二值化。
2 Regularized logistic regression
如果我们在碰到这种问题的分类的时候,只有2个参数只能用直线进行划分的话显然不好,我们就不得不增加参数,比如x1*x2以及x1^2等,增加参数虽然能够更好的划分训练集,但是也会带来过度匹配(overfitting)的问题,下面的练习就会解决这个问题。
按照之前在正规化中的介绍,将会在代价函数中添加参数本身大小的影响,从而使得参数的大小都比较接近0,修改过的公式在视频和pgf都已列出,我们需要做的就是用Matlab语言实现之。代码如下(costFunctionReg.m):
Hx = sigmoid(X * theta); J = 1/m * (-y'*log(Hx)-(1-y')*log(1-Hx)) + lambda/(2*m) * (theta(2:end)' * theta(2:end)); grad = 1/m * ((Hx - y)' * X) + lambda/m * theta'; grad(1) = grad(1) - lambda/m * theta(1);
最后的效果如下:

MySQL 느린 쿼리를 최적화하려면 SlowQueryLog 및 Performance_Schema를 사용해야합니다. 1. SlowQueryLog 및 Set Stresholds를 사용하여 느린 쿼리를 기록합니다. 2. Performance_schema를 사용하여 쿼리 실행 세부 정보를 분석하고 성능 병목 현상을 찾고 최적화하십시오.

MySQL 및 SQL은 개발자에게 필수적인 기술입니다. 1.MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템이며 SQL은 데이터베이스를 관리하고 작동하는 데 사용되는 표준 언어입니다. 2.MYSQL은 효율적인 데이터 저장 및 검색 기능을 통해 여러 스토리지 엔진을 지원하며 SQL은 간단한 문을 통해 복잡한 데이터 작업을 완료합니다. 3. 사용의 예에는 기본 쿼리 및 조건 별 필터링 및 정렬과 같은 고급 쿼리가 포함됩니다. 4. 일반적인 오류에는 구문 오류 및 성능 문제가 포함되며 SQL 문을 확인하고 설명 명령을 사용하여 최적화 할 수 있습니다. 5. 성능 최적화 기술에는 인덱스 사용, 전체 테이블 스캔 피하기, 조인 작업 최적화 및 코드 가독성 향상이 포함됩니다.

MySQL 비동기 마스터 슬레이브 복제는 Binlog를 통한 데이터 동기화를 가능하게하여 읽기 성능 및 고 가용성을 향상시킵니다. 1) 마스터 서버 레코드는 Binlog로 변경됩니다. 2) 슬레이브 서버는 I/O 스레드를 통해 Binlog를 읽습니다. 3) 서버 SQL 스레드는 데이터를 동기화하기 위해 Binlog를 적용합니다.

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1) 데이터베이스 및 테이블 작성 : CreateAbase 및 CreateTable 명령을 사용하십시오. 2) 기본 작업 : 삽입, 업데이트, 삭제 및 선택. 3) 고급 운영 : 가입, 하위 쿼리 및 거래 처리. 4) 디버깅 기술 : 확인, 데이터 유형 및 권한을 확인하십시오. 5) 최적화 제안 : 인덱스 사용, 선택을 피하고 거래를 사용하십시오.

MySQL의 설치 및 기본 작업에는 다음이 포함됩니다. 1. MySQL 다운로드 및 설치, 루트 사용자 비밀번호를 설정하십시오. 2. SQL 명령을 사용하여 CreateAbase 및 CreateTable과 같은 데이터베이스 및 테이블을 만듭니다. 3. CRUD 작업을 실행하고 삽입, 선택, 업데이트, 명령을 삭제합니다. 4. 성능을 최적화하고 복잡한 논리를 구현하기 위해 인덱스 및 저장 절차를 생성합니다. 이 단계를 사용하면 MySQL 데이터베이스를 처음부터 구축하고 관리 할 수 있습니다.

innodbbufferpool은 데이터와 색인 페이지를 메모리에로드하여 MySQL 데이터베이스의 성능을 향상시킵니다. 1) 데이터 페이지가 버퍼 풀에로드되어 디스크 I/O를 줄입니다. 2) 더러운 페이지는 정기적으로 디스크로 표시되고 새로 고침됩니다. 3) LRU 알고리즘 관리 데이터 페이지 제거. 4) 읽기 메커니즘은 가능한 데이터 페이지를 미리로드합니다.

MySQL은 설치가 간단하고 강력하며 데이터를 쉽게 관리하기 쉽기 때문에 초보자에게 적합합니다. 1. 다양한 운영 체제에 적합한 간단한 설치 및 구성. 2. 데이터베이스 및 테이블 작성, 삽입, 쿼리, 업데이트 및 삭제와 같은 기본 작업을 지원합니다. 3. 조인 작업 및 하위 쿼리와 같은 고급 기능을 제공합니다. 4. 인덱싱, 쿼리 최적화 및 테이블 파티셔닝을 통해 성능을 향상시킬 수 있습니다. 5. 데이터 보안 및 일관성을 보장하기위한 지원 백업, 복구 및 보안 조치.

전체 테이블 스캔은 MySQL에서 인덱스를 사용하는 것보다 빠를 수 있습니다. 특정 사례는 다음과 같습니다. 1) 데이터 볼륨은 작습니다. 2) 쿼리가 많은 양의 데이터를 반환 할 때; 3) 인덱스 열이 매우 선택적이지 않은 경우; 4) 복잡한 쿼리시. 쿼리 계획을 분석하고 인덱스 최적화, 과도한 인덱스를 피하고 정기적으로 테이블을 유지 관리하면 실제 응용 프로그램에서 최상의 선택을 할 수 있습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

뜨거운 주제



