注意:以下内容在2.x版本与1.x版本同样适用,已在2.4.1与1.2.0进行测试。 一、前期准备 1、创建伪分布Hadoop环境,请参考官方文档。或者http://blog.csdn.net/jediael_lu/article/details/38637277 2、准备数据文件如下sample.txt: 12345679867623119010123
注意:以下内容在2.x版本与1.x版本同样适用,已在2.4.1与1.2.0进行测试。
一、前期准备
1、创建伪分布Hadoop环境,请参考官方文档。或者http://blog.csdn.net/jediael_lu/article/details/38637277
2、准备数据文件如下sample.txt:
123456798676231190101234567986762311901012345679867623119010123456798676231190101234561+00121534567890356
123456798676231190101234567986762311901012345679867623119010123456798676231190101234562+01122934567890456
123456798676231190201234567986762311901012345679867623119010123456798676231190101234562+02120234567893456
123456798676231190401234567986762311901012345679867623119010123456798676231190101234561+00321234567803456
123456798676231190101234567986762311902012345679867623119010123456798676231190101234561+00429234567903456
123456798676231190501234567986762311902012345679867623119010123456798676231190101234561+01021134568903456
123456798676231190201234567986762311902012345679867623119010123456798676231190101234561+01124234578903456
123456798676231190301234567986762311905012345679867623119010123456798676231190101234561+04121234678903456
123456798676231190301234567986762311905012345679867623119010123456798676231190101234561+00821235678903456
二、编写代码
1、创建Map
package org.jediael.hadoopDemo.maxtemperature; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class MaxTemperatureMapper extends Mapper<longwritable text intwritable> { private static final int MISSING = 9999; @Override public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String year = line.substring(15, 19); int airTemperature; if (line.charAt(87) == '+') { // parseInt doesn't like leading plus // signs airTemperature = Integer.parseInt(line.substring(88, 92)); } else { airTemperature = Integer.parseInt(line.substring(87, 92)); } String quality = line.substring(92, 93); if (airTemperature != MISSING && quality.matches("[01459]")) { context.write(new Text(year), new IntWritable(airTemperature)); } } } </longwritable>
2、创建Reduce
package org.jediael.hadoopDemo.maxtemperature; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class MaxTemperatureReducer extends Reducer<text intwritable text> { @Override public void reduce(Text key, Iterable<intwritable> values, Context context) throws IOException, InterruptedException { int maxValue = Integer.MIN_VALUE; for (IntWritable value : values) { maxValue = Math.max(maxValue, value.get()); } context.write(key, new IntWritable(maxValue)); } }</intwritable></text>
3、创建main方法
package org.jediael.hadoopDemo.maxtemperature; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class MaxTemperature { public static void main(String[] args) throws Exception { if (args.length != 2) { System.err .println("Usage: MaxTemperature <input path> <output path>"); System.exit(-1); } Job job = new Job(); job.setJarByClass(MaxTemperature.class); job.setJobName("Max temperature"); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.setMapperClass(MaxTemperatureMapper.class); job.setReducerClass(MaxTemperatureReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); System.exit(job.waitForCompletion(true) ? 0 : 1); } } </output>
4、导出成MaxTemp.jar,并上传至运行程序的服务器。
三、运行程序
1、创建input目录并将sample.txt复制到input目录
hadoop fs -put sample.txt /
2、运行程序
export HADOOP_CLASSPATH=MaxTemp.jar
hadoop org.jediael.hadoopDemo.maxtemperature.MaxTemperature /sample.txt output10
注意输出目录不能已经存在,否则会创建失败。
3、查看结果
(1)查看结果
[jediael@jediael44 code]$ hadoop fs -cat output10/*
14/07/09 14:51:35 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
1901 42
1902 212
1903 412
1904 32
1905 102
(2)运行时输出
[jediael@jediael44 code]$ hadoop org.jediael.hadoopDemo.maxtemperature.MaxTemperature /sample.txt output10
14/07/09 14:50:40 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/07/09 14:50:41 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
14/07/09 14:50:42 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
14/07/09 14:50:43 INFO input.FileInputFormat: Total input paths to process : 1
14/07/09 14:50:43 INFO mapreduce.JobSubmitter: number of splits:1
14/07/09 14:50:44 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1404888618764_0001
14/07/09 14:50:44 INFO impl.YarnClientImpl: Submitted application application_1404888618764_0001
14/07/09 14:50:44 INFO mapreduce.Job: The url to track the job: http://jediael44:8088/proxy/application_1404888618764_0001/
14/07/09 14:50:44 INFO mapreduce.Job: Running job: job_1404888618764_0001
14/07/09 14:50:57 INFO mapreduce.Job: Job job_1404888618764_0001 running in uber mode : false
14/07/09 14:50:57 INFO mapreduce.Job: map 0% reduce 0%
14/07/09 14:51:05 INFO mapreduce.Job: map 100% reduce 0%
14/07/09 14:51:15 INFO mapreduce.Job: map 100% reduce 100%
14/07/09 14:51:15 INFO mapreduce.Job: Job job_1404888618764_0001 completed successfully
14/07/09 14:51:16 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=94
FILE: Number of bytes written=185387
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=1051
HDFS: Number of bytes written=43
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=5812
Total time spent by all reduces in occupied slots (ms)=7023
Total time spent by all map tasks (ms)=5812
Total time spent by all reduce tasks (ms)=7023
Total vcore-seconds taken by all map tasks=5812
Total vcore-seconds taken by all reduce tasks=7023
Total megabyte-seconds taken by all map tasks=5951488
Total megabyte-seconds taken by all reduce tasks=7191552
Map-Reduce Framework
Map input records=9
Map output records=8
Map output bytes=72
Map output materialized bytes=94
Input split bytes=97
Combine input records=0
Combine output records=0
Reduce input groups=5
Reduce shuffle bytes=94
Reduce input records=8
Reduce output records=5
Spilled Records=16
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=154
CPU time spent (ms)=1450
Physical memory (bytes) snapshot=303112192
Virtual memory (bytes) snapshot=1685733376
Total committed heap usage (bytes)=136515584
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=954
File Output Format Counters
Bytes Written=43

MySQL Index Cardinality는 쿼리 성능에 중대한 영향을 미칩니다. 1. 높은 카디널리티 인덱스는 데이터 범위를보다 효과적으로 좁히고 쿼리 효율성을 향상시킬 수 있습니다. 2. 낮은 카디널리티 인덱스는 전체 테이블 스캔으로 이어질 수 있으며 쿼리 성능을 줄일 수 있습니다. 3. 관절 지수에서는 쿼리를 최적화하기 위해 높은 카디널리티 시퀀스를 앞에 놓아야합니다.

MySQL 학습 경로에는 기본 지식, 핵심 개념, 사용 예제 및 최적화 기술이 포함됩니다. 1) 테이블, 행, 열 및 SQL 쿼리와 같은 기본 개념을 이해합니다. 2) MySQL의 정의, 작업 원칙 및 장점을 배우십시오. 3) 인덱스 및 저장 절차와 같은 기본 CRUD 작업 및 고급 사용량을 마스터합니다. 4) 인덱스의 합리적 사용 및 최적화 쿼리와 같은 일반적인 오류 디버깅 및 성능 최적화 제안에 익숙합니다. 이 단계를 통해 MySQL의 사용 및 최적화를 완전히 파악할 수 있습니다.

MySQL의 실제 응용 프로그램에는 기본 데이터베이스 설계 및 복잡한 쿼리 최적화가 포함됩니다. 1) 기본 사용 : 사용자 정보 삽입, 쿼리, 업데이트 및 삭제와 같은 사용자 데이터를 저장하고 관리하는 데 사용됩니다. 2) 고급 사용 : 전자 상거래 플랫폼의 주문 및 재고 관리와 같은 복잡한 비즈니스 로직을 처리합니다. 3) 성능 최적화 : 인덱스, 파티션 테이블 및 쿼리 캐시를 사용하여 합리적으로 성능을 향상시킵니다.

MySQL의 SQL 명령은 DDL, DML, DQL 및 DCL과 같은 범주로 나눌 수 있으며 데이터베이스 및 테이블을 작성, 수정, 삭제, 삽입, 업데이트, 데이터 삭제 및 복잡한 쿼리 작업을 수행하는 데 사용됩니다. 1. 기본 사용에는 CreateTable 생성 테이블, InsertInto 삽입 데이터 및 쿼리 데이터 선택이 포함됩니다. 2. 고급 사용에는 테이블 조인, 하위 쿼리 및 데이터 집계에 대한 GroupBy 조인이 포함됩니다. 3. 구문 검사, 데이터 유형 변환 및 권한 관리를 통해 구문 오류, 데이터 유형 불일치 및 권한 문제와 같은 일반적인 오류를 디버깅 할 수 있습니다. 4. 성능 최적화 제안에는 인덱스 사용, 전체 테이블 스캔 피하기, 조인 작업 최적화 및 트랜잭션을 사용하여 데이터 일관성을 보장하는 것이 포함됩니다.

Innodb는 잠금 장치 및 MVCC를 통한 Undolog, 일관성 및 분리를 통해 원자력을 달성하고, Redolog를 통한 지속성을 달성합니다. 1) 원자력 : Undolog를 사용하여 원래 데이터를 기록하여 트랜잭션을 롤백 할 수 있는지 확인하십시오. 2) 일관성 : 행 수준 잠금 및 MVCC를 통한 데이터 일관성을 보장합니다. 3) 격리 : 다중 격리 수준을지지하고 반복적 인 방사선이 기본적으로 사용됩니다. 4) 지속성 : Redolog를 사용하여 수정을 기록하여 데이터가 오랫동안 저장되도록하십시오.

데이터베이스 및 프로그래밍에서 MySQL의 위치는 매우 중요합니다. 다양한 응용 프로그램 시나리오에서 널리 사용되는 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1) MySQL은 웹, 모바일 및 엔터프라이즈 레벨 시스템을 지원하는 효율적인 데이터 저장, 조직 및 검색 기능을 제공합니다. 2) 클라이언트 서버 아키텍처를 사용하고 여러 스토리지 엔진 및 인덱스 최적화를 지원합니다. 3) 기본 사용에는 테이블 작성 및 데이터 삽입이 포함되며 고급 사용에는 다중 테이블 조인 및 복잡한 쿼리가 포함됩니다. 4) SQL 구문 오류 및 성능 문제와 같은 자주 묻는 질문은 설명 명령 및 느린 쿼리 로그를 통해 디버깅 할 수 있습니다. 5) 성능 최적화 방법에는 인덱스의 합리적인 사용, 최적화 된 쿼리 및 캐시 사용이 포함됩니다. 모범 사례에는 거래 사용 및 준비된 체계가 포함됩니다

MySQL은 소규모 및 대기업에 적합합니다. 1) 소기업은 고객 정보 저장과 같은 기본 데이터 관리에 MySQL을 사용할 수 있습니다. 2) 대기업은 MySQL을 사용하여 대규모 데이터 및 복잡한 비즈니스 로직을 처리하여 쿼리 성능 및 트랜잭션 처리를 최적화 할 수 있습니다.

InnoDB는 팬텀 읽기를 차세대 점화 메커니즘을 통해 효과적으로 방지합니다. 1) Next-Keylocking은 Row Lock과 Gap Lock을 결합하여 레코드와 간격을 잠그기 위해 새로운 레코드가 삽입되지 않도록합니다. 2) 실제 응용 분야에서 쿼리를 최적화하고 격리 수준을 조정함으로써 잠금 경쟁을 줄이고 동시성 성능을 향상시킬 수 있습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는
