聚合函数 在介绍GROUP BY 和 HAVING 子句前,我们必需先讲讲sql语言中一种特殊的函数:聚合函数, 例如SUM, COUNT, MAX, AVG等。这些函数和其它函数的根本区别就是它们一般作用在多条记录上。 SELECT SUM(population) FROM bbc 这里的SUM作用在所有返回记录
聚合函数
在介绍GROUP BY 和 HAVING 子句前,我们必需先讲讲sql语言中一种特殊的函数:聚合函数, 例如SUM, COUNT, MAX, AVG等。这些函数和其它函数的根本区别就是它们一般作用在多条记录上。
SELECT SUM(population) FROM bbc
这里的SUM作用在所有返回记录的population字段上,结果就是该查询只返回一个结果,即国家的总人口数。
GROUP BY用法
Group By语句从英文的字面意义上理解就是“根据(by)一定的规则进行分组(Group)”。它的作用是通过一定的规则将一个数据集划分成若干个小的区域,然后针对若干个小区域进行数据处理。
注意:group by 是先排序后分组;
举例子说明:如果要用到group by 一般用到的就是“每这个字段” 例如说明现在有一个这样的表:每个部门有多少人 就要用到分组的技术
<code class=" hljs sql"><span class="hljs-operator"><span class="hljs-keyword">select</span> DepartmentID <span class="hljs-keyword">as</span> <span class="hljs-string">'部门名称'</span>, <span class="hljs-aggregate">COUNT</span>(*) <span class="hljs-keyword">as</span> <span class="hljs-string">'个数'</span> <span class="hljs-keyword">from</span> BasicDepartment <span class="hljs-keyword">group</span> <span class="hljs-keyword">by</span> DepartmentID</span></code>
这个就是使用了group by +字段进行了分组,其中我们就可以理解为我们按照了部门的名称ID,DepartmentID将数据集进行了分组;然后再进行各个组的统计数据分别有多少;
通俗一点说:group by 字段1,字段2。。。(整个表中不止这两个字段)表示数据集中字段1相等,字段2也相等的数据归为一组,只显示一条数据。那么你可以对字段3进行统计(求和,求平均值等)
注意
select DepartmentID,DepartmentName from BasicDepartment group by DepartmentID
–将会出现错误
选择列表中的列 ‘DepartmentName’ 无效,因为该列没有包含在聚合函数或 GROUP BY 子句中。这就是我们需要注意的一点,如果在返回集字段中,这些字段要么就要包含在Group By语句的后面,作为分组的依据;要么就要被包含在聚合函数中。为什么呢,根据前面的说明:DepartmentID相等的数据归为一组,只显示一条记录,那如果数据集中有这样三条数据。
DepartmentID DepartmentName
dept001 技术部
dept001 综合部
dept001 人力部
那我只能显示一条记录,我显示哪个?没法判断了。到这里有三种选择:
- 把DepartmentName也加入到分组的条件里去(GROUP BY DepartmentID,DepartmentName),那这三条记录就是三个分组。
- 不显示DepartmentName字段。
- 用聚合函数把这三条记录整合成一条记录count(DepartmentName)
WHERE和 HAVING
HAVING子句可以让我们筛选成组后的各组数据。HAVING子句可以使用聚合函数
WHERE子句在聚合前先筛选记录.也就是说作用在GROUP BY 子句和HAVING子句前. WHERE字句中不能使用聚合函数
举例说明:
一、显示每个地区的总人口数和总面积.
<code class=" hljs sql"><span class="hljs-operator"><span class="hljs-keyword">SELECT</span> region, <span class="hljs-aggregate">SUM</span>(population), <span class="hljs-aggregate">SUM</span>(area) <span class="hljs-keyword">FROM</span> bbc <span class="hljs-keyword">GROUP</span> <span class="hljs-keyword">BY</span> region</span></code>
先以region把返回记录分成多个组,这就是GROUP BY的字面含义。分完组后,然后用聚合函数对每组中的不同字段(一或多条记录)作运算。
二、 显示每个地区的总人口数和总面积.仅显示那些面积超过1000000的地区。
<code class=" hljs sql"><span class="hljs-operator"><span class="hljs-keyword">SELECT</span> region, <span class="hljs-aggregate">SUM</span>(population), <span class="hljs-aggregate">SUM</span>(area) <span class="hljs-keyword">FROM</span> bbc8 F4 w2 v( P- f <span class="hljs-keyword">GROUP</span> <span class="hljs-keyword">BY</span> region <span class="hljs-keyword">HAVING</span> <span class="hljs-aggregate">SUM</span>(area)><span class="hljs-number">1000000</span></span></code>
在这里,我们不能用where来筛选超过1000000的地区,因为表中不存在这样一条记录。相反,HAVING子句可以让我们筛选成组后的各组数据
需要注意说明:当同时含有where子句、group by 子句 、having子句及聚集函数时,执行顺序如下:
执行where子句查找符合条件的数据;
使用group by 子句对数据进行分组;对group by 子句形成的组运行聚集函数计算每一组的值;最后用having 子句去掉不符合条件的组。
having子句和where子句都可以用来设定限制条件以使查询结果满足一定的条件限制。
having子句限制的是组,而不是行。where子句中不能使用聚集函数,而having子句中可以。
GROUP BY 与COUNT的一些复杂用法
直接用例子来说明吧
现有表:居民区表:DW_DM_RE_RC,部分字段如下
<code class=" hljs cs"><span class="hljs-keyword">select</span> AREA_ID,AREA_NAME,CITY_ID,CITY_NAME,RC_ID,RC_NAME,RC_TYPE_ID,RC_TYPE_NAME,RC_ADDRESS,FLOOR_CNT,BUILDING_CNT <span class="hljs-keyword">from</span> DW_DM_RE_RC</code>
数据主要集中在宿迁和无锡两个地市。
现需要根据AREA_ID和CITY_NAME进行分组,且显示同一个AREA_ID的数据数量。(AREA_ID和AREA_NAME相关联,CITY_ID,CITY_NAME相关联)
第一步:
sql1:
<code class=" hljs sql"><span class="hljs-operator"><span class="hljs-keyword">select</span> <span class="hljs-aggregate">COUNT</span>(*) <span class="hljs-keyword">as</span> <span class="hljs-aggregate">COUNT</span>,AREA_ID,AREA_NAME,CITY_ID,CITY_NAME <span class="hljs-keyword">from</span> DW_DM_RE_RC <span class="hljs-keyword">group</span> <span class="hljs-keyword">by</span> AREA_ID,AREA_NAME,CITY_ID,CITY_NAME</span></code>
这里COUNT显示的是以AREA_ID和CITY_NAME为条件进行分组的,
表示AREA_ID=510,CITY_NAME=’滨湖区’(无锡市滨湖区)的数据有131条,表示AREA_ID=510,CITY_NAME=’宜兴’(无锡市宜兴区)的数据有131条,表示AREA_ID=527,CITY_NAME=’泗洪’(宿迁市泗洪区)的数据有101条,但我需要的是属于AREA_ID=510(无锡市,不管哪个区)的总数据量有多少。由此得到启发,可以将sql1的查询结果当做结果集,在上面再进行一次查询。
sql2:
<code class=" hljs sql"><span class="hljs-operator"><span class="hljs-keyword">SELECT</span> AREA_ID,AREA_NAME,<span class="hljs-aggregate">SUM</span>(<span class="hljs-aggregate">COUNT</span>),CITY_ID,CITY_NAME <span class="hljs-keyword">FROM</span> ( <span class="hljs-keyword">select</span> <span class="hljs-aggregate">COUNT</span>(*) <span class="hljs-keyword">as</span> <span class="hljs-aggregate">COUNT</span>,AREA_ID,AREA_NAME,CITY_ID,CITY_NAME <span class="hljs-keyword">from</span> DW_DM_RE_RC <span class="hljs-keyword">group</span> <span class="hljs-keyword">by</span> AREA_ID,AREA_NAME,CITY_ID,CITY_NAME )TEST <span class="hljs-keyword">GROUP</span> <span class="hljs-keyword">BY</span> AREA_ID,AREA_NAME,CITY_ID,CITY_NAME</span></code>

데이터베이스 및 프로그래밍에서 MySQL의 위치는 매우 중요합니다. 다양한 응용 프로그램 시나리오에서 널리 사용되는 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1) MySQL은 웹, 모바일 및 엔터프라이즈 레벨 시스템을 지원하는 효율적인 데이터 저장, 조직 및 검색 기능을 제공합니다. 2) 클라이언트 서버 아키텍처를 사용하고 여러 스토리지 엔진 및 인덱스 최적화를 지원합니다. 3) 기본 사용에는 테이블 작성 및 데이터 삽입이 포함되며 고급 사용에는 다중 테이블 조인 및 복잡한 쿼리가 포함됩니다. 4) SQL 구문 오류 및 성능 문제와 같은 자주 묻는 질문은 설명 명령 및 느린 쿼리 로그를 통해 디버깅 할 수 있습니다. 5) 성능 최적화 방법에는 인덱스의 합리적인 사용, 최적화 된 쿼리 및 캐시 사용이 포함됩니다. 모범 사례에는 거래 사용 및 준비된 체계가 포함됩니다

MySQL은 소규모 및 대기업에 적합합니다. 1) 소기업은 고객 정보 저장과 같은 기본 데이터 관리에 MySQL을 사용할 수 있습니다. 2) 대기업은 MySQL을 사용하여 대규모 데이터 및 복잡한 비즈니스 로직을 처리하여 쿼리 성능 및 트랜잭션 처리를 최적화 할 수 있습니다.

InnoDB는 팬텀 읽기를 차세대 점화 메커니즘을 통해 효과적으로 방지합니다. 1) Next-Keylocking은 Row Lock과 Gap Lock을 결합하여 레코드와 간격을 잠그기 위해 새로운 레코드가 삽입되지 않도록합니다. 2) 실제 응용 분야에서 쿼리를 최적화하고 격리 수준을 조정함으로써 잠금 경쟁을 줄이고 동시성 성능을 향상시킬 수 있습니다.

MySQL은 프로그래밍 언어가 아니지만 쿼리 언어 SQL은 프로그래밍 언어의 특성을 가지고 있습니다. 1. SQL은 조건부 판단, 루프 및 가변 작업을 지원합니다. 2. 저장된 절차, 트리거 및 기능을 통해 사용자는 데이터베이스에서 복잡한 논리 작업을 수행 할 수 있습니다.

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템으로, 주로 데이터를 신속하고 안정적으로 저장하고 검색하는 데 사용됩니다. 작업 원칙에는 클라이언트 요청, 쿼리 해상도, 쿼리 실행 및 반환 결과가 포함됩니다. 사용의 예로는 테이블 작성, 데이터 삽입 및 쿼리 및 조인 작업과 같은 고급 기능이 포함됩니다. 일반적인 오류에는 SQL 구문, 데이터 유형 및 권한이 포함되며 최적화 제안에는 인덱스 사용, 최적화 된 쿼리 및 테이블 분할이 포함됩니다.

MySQL은 데이터 저장, 관리, 쿼리 및 보안에 적합한 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1. 다양한 운영 체제를 지원하며 웹 응용 프로그램 및 기타 필드에서 널리 사용됩니다. 2. 클라이언트-서버 아키텍처 및 다양한 스토리지 엔진을 통해 MySQL은 데이터를 효율적으로 처리합니다. 3. 기본 사용에는 데이터베이스 및 테이블 작성, 데이터 삽입, 쿼리 및 업데이트가 포함됩니다. 4. 고급 사용에는 복잡한 쿼리 및 저장 프로 시저가 포함됩니다. 5. 설명 진술을 통해 일반적인 오류를 디버깅 할 수 있습니다. 6. 성능 최적화에는 인덱스의 합리적인 사용 및 최적화 된 쿼리 문이 포함됩니다.

MySQL은 성능, 신뢰성, 사용 편의성 및 커뮤니티 지원을 위해 선택됩니다. 1.MYSQL은 효율적인 데이터 저장 및 검색 기능을 제공하여 여러 데이터 유형 및 고급 쿼리 작업을 지원합니다. 2. 고객-서버 아키텍처 및 다중 스토리지 엔진을 채택하여 트랜잭션 및 쿼리 최적화를 지원합니다. 3. 사용하기 쉽고 다양한 운영 체제 및 프로그래밍 언어를 지원합니다. 4. 강력한 지역 사회 지원을 받고 풍부한 자원과 솔루션을 제공합니다.

InnoDB의 잠금 장치에는 공유 잠금 장치, 독점 잠금, 의도 잠금 장치, 레코드 잠금, 갭 잠금 및 다음 키 잠금 장치가 포함됩니다. 1. 공유 잠금을 사용하면 다른 트랜잭션을 읽지 않고 트랜잭션이 데이터를 읽을 수 있습니다. 2. 독점 잠금은 다른 트랜잭션이 데이터를 읽고 수정하는 것을 방지합니다. 3. 의도 잠금은 잠금 효율을 최적화합니다. 4. 레코드 잠금 잠금 인덱스 레코드. 5. 갭 잠금 잠금 장치 색인 기록 간격. 6. 다음 키 잠금은 데이터 일관성을 보장하기 위해 레코드 잠금과 갭 잠금의 조합입니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.
