検索

ホームページ  >  に質問  >  本文

python - 急求问——关于iteritems不能用的问题

明天就是毕设中期答辩了,想赶一下进度,现在是做贝叶斯网络预测模型,在网上找了一个例子,想跑一下试试,结果报错iteritems用不了,好像是Python版本的问题,想问问有没有什么比较快速一点的解决办法,救急如救火,先谢谢各位了

# Example of Naive Bayes implemented from Scratch in Python
import csv
import random
import math

def loadCsv(filename):
    lines = csv.reader(open(filename, "rb"))
    dataset = list(lines)
    for i in range(len(dataset)):
        dataset[i] = [float(x) for x in dataset[i]]
    return dataset

def splitDataset(dataset, splitRatio):
    trainSize = int(len(dataset) * splitRatio)
    trainSet = []
    copy = list(dataset)
    while len(trainSet) < trainSize:
        index = random.randrange(len(copy))
        trainSet.append(copy.pop(index))
    return [trainSet, copy]

def separateByClass(dataset):
    separated = {}
    for i in range(len(dataset)):
        vector = dataset[i]
        if (vector[-1] not in separated):
            separated[vector[-1]] = []
        separated[vector[-1]].append(vector)
    return separated

def mean(numbers):
    return sum(numbers)/float(len(numbers))

def stdev(numbers):
    avg = mean(numbers)
    variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
    return math.sqrt(variance)

def summarize(dataset):
    summaries = [(mean(attribute), stdev(attribute)) for attribute in zip(*dataset)]
    del summaries[-1]
    return summaries

def summarizeByClass(dataset):
    separated = separateByClass(dataset)
    summaries = {}
    for classValue, instances in separated.iteritems():
        summaries[classValue] = summarize(instances)
    return summaries

def calculateProbability(x, mean, stdev):
    exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
    return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent

def calculateClassProbabilities(summaries, inputVector):
    probabilities = {}
    for classValue, classSummaries in summaries.iteritems():
        probabilities[classValue] = 1
        for i in range(len(classSummaries)):
            mean, stdev = classSummaries[i]
            x = inputVector[i]
            probabilities[classValue] *= calculateProbability(x, mean, stdev)
    return probabilities

def predict(summaries, inputVector):
    probabilities = calculateClassProbabilities(summaries, inputVector)
    bestLabel, bestProb = None, -1
    for classValue, probability in probabilities.iteritems():
        if bestLabel is None or probability > bestProb:
            bestProb = probability
            bestLabel = classValue
    return bestLabel

def getPredictions(summaries, testSet):
    predictions = []
    for i in range(len(testSet)):
        result = predict(summaries, testSet[i])
        predictions.append(result)
    return predictions

def getAccuracy(testSet, predictions):
    correct = 0
    for i in range(len(testSet)):
        if testSet[i][-1] == predictions[i]:
            correct += 1
    return (correct/float(len(testSet))) * 100.0

def main():
    filename = 'pima-indians-diabetes.data.csv'
    splitRatio = 0.67
    dataset = loadCsv(filename)
    trainingSet, testSet = splitDataset(dataset, splitRatio)
    print('Split {0} rows into train={1} and test={2} rows').format(len(dataset), len(trainingSet), len(testSet))
    # prepare model
    summaries = summarizeByClass(trainingSet)
    # test model
    predictions = getPredictions(summaries, testSet)
    accuracy = getAccuracy(testSet, predictions)
    print('Accuracy: {0}%').format(accuracy)

main()

报错如下:

Traceback (most recent call last):
  File "E:/Data/BEYES/data_test.py", line 101, in <module>
    main()
  File "E:/Data/BEYES/data_test.py", line 91, in main
    dataset = loadCsv(filename)
  File "E:/Data/BEYES/data_test.py", line 8, in loadCsv
    dataset = list(lines)
_csv.Error: iterator should return strings, not bytes (did you open the file in text mode?)

数据格式如下,文件名为pima-indians-diabetes.data.csv:

6,148,72,35,0,33.6,0.627,50,1
1,85,66,29,0,26.6,0.351,31,0
8,183,64,0,0,23.3,0.672,32,1
1,89,66,23,94,28.1,0.167,21,0
0,137,40,35,168,43.1,2.288,33,1
5,116,74,0,0,25.6,0.201,30,0
3,78,50,32,88,31.0,0.248,26,1
10,115,0,0,0,35.3,0.134,29,0
2,197,70,45,543,30.5,0.158,53,1
8,125,96,0,0,0.0,0.232,54,1
4,110,92,0,0,37.6,0.191,30,0
10,168,74,0,0,38.0,0.537,34,1
10,139,80,0,0,27.1,1.441,57,0
1,189,60,23,846,30.1,0.398,59,1
5,166,72,19,175,25.8,0.587,51,1
7,100,0,0,0,30.0,0.484,32,1
0,118,84,47,230,45.8,0.551,31,1
7,107,74,0,0,29.6,0.254,31,1
1,103,30,38,83,43.3,0.183,33,0
1,115,70,30,96,34.6,0.529,32,1
3,126,88,41,235,39.3,0.704,27,0
8,99,84,0,0,35.4,0.388,50,0
7,196,90,0,0,39.8,0.451,41,1
9,119,80,35,0,29.0,0.263,29,1
11,143,94,33,146,36.6,0.254,51,1
大家讲道理大家讲道理2836日前751

全員に返信(1)返信します

  • PHPz

    PHPz2017-04-18 10:36:24

    リーリー

    誰に教えてもらいましたか?次のように書くことをお勧めします:

    リーリー

    ドキュメントに例があります。

    もちろん、さらに 3 行を保存することもできますが、それは初心者には不親切です。

    追記: エラーレポートに iteritems。这是个 Python 2.x 才需要的方法,Python 3.x 里直接用 items がまったく記載されていなくても大丈夫です。

    返事
    0
  • キャンセル返事