検索

回复内容:

谢谢老原 @原博文 邀请 : )

我列出来几个,不知道算不算高级技巧,但是我个人觉得非常有用。

1. 善用迭代器

迭代器在很多语言里面都有,而在 Python 里适当的场景用迭代器会非常的“爽”。一来因为迭代器每次产生一个对象,适当使用能有效节省内存;二来它能达到部分“延迟计算”的效果。除此以外,因为 Generator (yield 关键字)和 Generator Expression 的存在,有时候使用迭代器能提升代码可读性。

举例,itertools.islice((calculate_for_value(v) for v in values), 0, 12) 能够只在 [0, 12) 范围内计算,而且是延迟计算的,即迭代到了那个对象才去计算。又如 any(i % 3 == 0 for i in numbers) 能够找出 numbers 里第一个能被 3 整除的值,因为里面是个 Generator Expression(迭代器的一种),所以找出以后 any 函数就会立即返回,并不需要对整个 numbers 列表计算 i % 3。

顺带推荐下这个库 erikrose/more-itertools ,里面包含了很多实用的迭代器函数,是对标准库 itertools 的一个很不错的补充。

2. 善用描述符(Descriptor)

Python 的描述符是对“属性”的抽象,一个描述符定义成类属性以后,能够控制这个类的实例上同名实例属性的 get、set、delete 行为,比 __getattr__ 这样的实例级 magic method 有更细的粒度,并且更容易复用。这个文档有简单的描述 Descriptor HowTo Guide ,可见 Python 的“实例方法”、@property 全由它实现,一些第三方库也有用到(例如 SQLAlchemy 的 Column、WTForms 的 Field 乃至 Python 3.4 新增的 enum.Enum 类型)。

利用描述符特性,可以在业务代码中实现一些非常方便的定制,例如可以自己实现一个能缓存返回值的 cached_property(也可以不用自己实现,直接用 Werkzeug 的)。

3. 尽量不要用反射技巧去 fight with language

我个人的一个观点:用一门编程语言就应该入乡随俗,fight with language 的事情不要做太多为好。因为闭门造的轮子很难造圆,更何况站在语言使用者的层面去和语言的设计搏击实在很不自量力。

问题问的是“高级技巧”,那么对于一个动态语言,反射当然算高级技巧的。可是我见过一些利用 Python 的反射来扫描出一些包中所有 .py 文件然后自动 import 包下的所有模块的。且不说这个做法破坏了 Python “模块即是命名空间” 和 lazy import 的设定,光是从“正确性”来说就有一堆问题。这个做法仅仅考虑到了模块文件系统中的场景,没考虑到可能模块在一个 zip 中的情况。就算再增强一下实现,考虑上 zip 的 import,那 Python 还有 PEP 302 定义的 Import Hook 用法呢,被这样一 hack 就完全没法用了。这种 fight with language 的做法很难去做到真正的“正确”。

所以我觉得还有一个 Python 的技巧就是想使用“高级技巧”的时候谨慎地考虑使用。静下来想想自己是不是在 fight with language 了,如果是的话,建议停手。要不就入乡随俗,要不就认真考虑一下 Python 是不是真的有值得去改进的地方。后者是需要经过很多深思熟虑的,不是 10 分钟的想法就够。如果后者的回答真的是“是”,我想可能正确的做法是写一个 PEP 然后和社区讨论,看能否将改进直接施于 Python 未来的版本之上,而不是在自己的代码里用一个看似高级技巧实是丑陋的 hack 的实现来对抗语言本身。

-------------------------------------------------------------------------------

其他的一些 Python 特色的技巧,例如 decorator、contextmanager 等,因为各路 Python 开发者基本都很熟悉,我就没列出来了。

-------------------------------------------------------------------------------

补充下:其实这里有个超长列表 Hidden features of Python …… 不过里面的很多特性现在都是日常了 推荐一下 Stack Overflow 上这个帖子:
Hidden features of Python 可以看看我的博客,这是我边看边思考的记录,目前还没写完,基本上一天一到两篇的节奏。

Python的高级特性1:容易忽略的不可变类型
Python的高级特性2:列表推导式,生成器与迭代器
python的高级特性3:神奇的__call__与返回函数
Python的高级特性4:函数式编程
Python的高级特性5:谈谈python的动态属性
Python的高级特性6:使用__slots__真的能省很多内存
Python的高级特性7:闭包和装饰器
Python的高级特性8:你真的了解类,对象,实例,方法吗
Python的高级特性9:蹩脚的多态
Python的高级特性10:无聊的@property
Python的高级特性11:拓展基本数据类型(dict) 推荐看一下《Python高级编程》。
里面比如yield、property等用法就算是比较高级的技巧了。
细说有很多,一一列举出来也太费劲。
至于列表解析什么的算是挺基础的东西了。 个人觉得python语言最为重要的哲学是可读性,所以提高代码的可读性是最为重要的,也是区分于初级技巧的高级技巧。


往往完成一件事是容易的,所不同的是其中的成本,是优雅程度。 写python肯定用协程了 没用过什么高级技巧,只说一些团队协作中的小技巧吧:
1. docstring
给模块或类、函数写docstring是个好习惯,看看官方示例:
<span class="o">>>></span> <span class="k">def</span> <span class="nf">my_function</span><span class="p">():</span>
<span class="o">...</span>     <span class="s">"""Do nothing, but document it.</span>
<span class="s">...</span>
<span class="s">...     No, really, it doesn't do anything.</span>
<span class="s">...     """</span>
<span class="o">...</span>     <span class="k">pass</span>
<span class="o">...</span>
<span class="o">>>></span> <span class="k">print</span> <span class="n">my_function</span><span class="o">.</span><span class="n">__doc__</span>
<span class="n">Do</span> <span class="n">nothing</span><span class="p">,</span> <span class="n">but</span> <span class="n">document</span> <span class="n">it</span><span class="o">.</span>

    <span class="n">No</span><span class="p">,</span> <span class="n">really</span><span class="p">,</span> <span class="n">it</span> <span class="n">doesn</span><span class="s">'t do anything.</span>
Lambda
比如
<span class="n">calculator</span><span class="p">{</span>
    <span class="s">'plus'</span> <span class="p">:</span> <span class="k">lambda</span> <span class="n">x</span><span class="p">,</span><span class="n">y</span> <span class="p">:</span> <span class="n">x</span> <span class="o">+</span> <span class="n">y</span><span class="p">,</span>
    <span class="s">'minus'</span> <span class="p">:</span> <span class="k">lambda</span> <span class="n">x</span><span class="p">,</span><span class="n">y</span> <span class="p">:</span> <span class="n">x</span> <span class="o">-</span> <span class="n">y</span>
<span class="p">}</span>

<span class="n">res</span> <span class="o">=</span> <span class="n">calculator</span><span class="p">[</span><span class="s">'plus'</span><span class="p">](</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span> <span class="c"># res = 5</span>
可以看看Python高级编程
还有 kokojia.com/course-526. 这个链接里的东东挺不错的,有兴趣的看看,希望可以帮到你
声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonを使用してテキストファイルのZIPF配布を見つける方法Pythonを使用してテキストファイルのZIPF配布を見つける方法Mar 05, 2025 am 09:58 AM

このチュートリアルでは、Pythonを使用してZIPFの法則の統計的概念を処理する方法を示し、法律の処理時にPythonの読み取りおよび並べ替えの効率性を示します。 ZIPF分布という用語が何を意味するのか疑問に思うかもしれません。この用語を理解するには、まずZIPFの法律を定義する必要があります。心配しないでください、私は指示を簡素化しようとします。 ZIPFの法則 ZIPFの法則は単に意味します。大きな自然言語のコーパスでは、最も頻繁に発生する単語は、2番目の頻繁な単語のほぼ2倍の頻度で表示されます。 例を見てみましょう。アメリカ英語の茶色のコーパスを見ると、最も頻繁な言葉は「thであることに気付くでしょう。

HTMLを解析するために美しいスープを使用するにはどうすればよいですか?HTMLを解析するために美しいスープを使用するにはどうすればよいですか?Mar 10, 2025 pm 06:54 PM

この記事では、Pythonライブラリである美しいスープを使用してHTMLを解析する方法について説明します。 find()、find_all()、select()、およびget_text()などの一般的な方法は、データ抽出、多様なHTML構造とエラーの処理、および代替案(SEL

Pythonでファイルをダウンロードする方法Pythonでファイルをダウンロードする方法Mar 01, 2025 am 10:03 AM

Pythonは、インターネットからファイルをダウンロードするさまざまな方法を提供します。これは、urllibパッケージまたはリクエストライブラリを使用してHTTPを介してダウンロードできます。このチュートリアルでは、これらのライブラリを使用してPythonからURLからファイルをダウンロードする方法を説明します。 ライブラリをリクエストします リクエストは、Pythonで最も人気のあるライブラリの1つです。クエリ文字列をURLに手動で追加したり、POSTデータのエンコードをフォームに追加せずに、HTTP/1.1リクエストを送信できます。 リクエストライブラリは、以下を含む多くの機能を実行できます フォームデータを追加します マルチパートファイルを追加します Python応答データにアクセスします リクエストを行います 頭

Pythonでの画像フィルタリングPythonでの画像フィルタリングMar 03, 2025 am 09:44 AM

ノイズの多い画像を扱うことは、特に携帯電話や低解像度のカメラの写真でよくある問題です。 このチュートリアルでは、OpenCVを使用してPythonの画像フィルタリング手法を調査して、この問題に取り組みます。 画像フィルタリング:強力なツール 画像フィルター

Pythonを使用してPDFドキュメントの操作方法Pythonを使用してPDFドキュメントの操作方法Mar 02, 2025 am 09:54 AM

PDFファイルは、クロスプラットフォームの互換性に人気があり、オペレーティングシステム、読み取りデバイス、ソフトウェア間でコンテンツとレイアウトが一貫しています。ただし、Python Plansing Plain Text Filesとは異なり、PDFファイルは、より複雑な構造を持つバイナリファイルであり、フォント、色、画像などの要素を含んでいます。 幸いなことに、Pythonの外部モジュールでPDFファイルを処理することは難しくありません。この記事では、PYPDF2モジュールを使用して、PDFファイルを開き、ページを印刷し、テキストを抽出する方法を示します。 PDFファイルの作成と編集については、私からの別のチュートリアルを参照してください。 準備 コアは、外部モジュールPYPDF2を使用することにあります。まず、PIPを使用してインストールします。 ピップはpです

DjangoアプリケーションでRedisを使用してキャッシュする方法DjangoアプリケーションでRedisを使用してキャッシュする方法Mar 02, 2025 am 10:10 AM

このチュートリアルでは、Redisキャッシングを活用して、特にDjangoフレームワーク内でPythonアプリケーションのパフォーマンスを向上させる方法を示しています。 Redisのインストール、Django構成、およびパフォーマンスの比較をカバーして、Beneを強調します

Natural Language Toolkit(NLTK)の紹介Natural Language Toolkit(NLTK)の紹介Mar 01, 2025 am 10:05 AM

自然言語処理(NLP)は、人間の言語の自動または半自動処理です。 NLPは言語学と密接に関連しており、認知科学、心理学、生理学、数学の研究とのリンクがあります。コンピューターサイエンスで

TensorflowまたはPytorchで深い学習を実行する方法は?TensorflowまたはPytorchで深い学習を実行する方法は?Mar 10, 2025 pm 06:52 PM

この記事では、深い学習のためにTensorflowとPytorchを比較しています。 関連する手順、データの準備、モデルの構築、トレーニング、評価、展開について詳しく説明しています。 特に計算グラップに関して、フレームワーク間の重要な違い

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール