这是《python基础教程》后面的实践,照着写写,一方面是来熟悉python的代码方式,另一方面是练习使用python中的基本的以及非基本的语法,做到熟能生巧。
这个项目一开始比较简单,不过重构之后就有些复杂了,但是更灵活了。
按照书上所说,重构之后的程序,分为四个模块:处理程序模块,过滤器模块,规则(其实应该是处理规则),语法分析器。
先来说处理程序模块,这个模块的作用有两个,一个是提供那些固定的html标记的输出(每一个标记都有start和end),另一个是对这个标记输出的开始和结束提供了一个友好的访问接口。来看下程序handlers.py:
代码如下:
class Handler:
'''
'''
def callback(self, prefix, name, *args):
method = getattr(self,prefix+name,None)
if callable(method): return method(*args)
def start(self, name):
self.callback('start_', name)
def end(self, name):
self.callback('end_', name)
def sub(self, name):
def substitution(match):
result = self.callback('sub_', name, match)
if result is None: match.group(0)
return result
return substitution
class HTMLRenderer(Handler):
'''
'''
def start_document(self):
print '
def end_document(self):
print ''
def start_paragraph(self):
print '
'
def end_paragraph(self):
print '
def start_heading(self):
print '
'
def end_heading(self):
print '
'def start_list(self):
print '
- '
def end_list(self):
print '
def start_listitem(self):
print '
def end_listitem(self):
print '
def start_title(self):
print '
'
def end_title(self):
print '
'def sub_emphasis(self, match):
return '%s' % match.group(1)
def sub_url(self, match):
return '%s' % (match.group(1),match.group(1))
def sub_mail(self, match):
return '%s' % (match.group(1),match.group(1))
def feed(self, data):
print data
这个程序堪称是整个“项目”的基石所在:提供了标签的输出,以及字符串的替换。理解起来也比较简单。
再来看第二个模块“过滤器”,这个模块更为简单,其实就是一个正则表达式的字符串。相关代码如下:
代码如下:
self.addFilter(r'\*(.+?)\*', 'emphasis')
self.addFilter(r'(http://[\.a-z0-9A-Z/]+)', 'url')
self.addFilter(r'([\.a-zA-Z]+@[\.a-zA-Z]+[a-zA-Z]+)','mail')
这就是三个过滤器了,分别是:强调牌过滤器(用×号标出的),url牌过滤器,email牌过滤器。熟悉正则表达式的同学理解起来是没有压力的。
再来看第三个模块“规则”,这个模块,抛开那祖父类不说,其他类应该有的两个方法是condition和action,前者是用来判断读进来的字符串是不是符合自家规则,后者是用来执行操作的,所谓的执行操作就是指调用“处理程序模块”,输出前标签、内容、后标签。 来看下这个模块的代码,其实这个里面几个类的关系,画到类图里面看会比较清晰。 rules.py:
代码如下:
class Rule:
def action(self, block, handler):
handler.start(self.type)
handler.feed(block)
handler.end(self.type)
return True
class HeadingRule(Rule):
type = 'heading'
def condition(self, block):
return not '\n' in block and len(block)
class TitleRule(HeadingRule):
type = 'title'
first = True
def condition(self, block):
if not self.first: return False
self.first = False
return HeadingRule.condition(self, block)
class ListItemRule(Rule):
type = 'listitem'
def condition(self, block):
return block[0] == '-'
def action(self,block,handler):
handler.start(self.type)
handler.feed(block[1:].strip())
handler.end(self.type)
return True
class ListRule(ListItemRule):
type = 'list'
inside = False
def condition(self, block):
return True
def action(self,block, handler):
if not self.inside and ListItemRule.condition(self,block):
handler.start(self.type)
self.inside = True
elif self.inside and not ListItemRule.condition(self,block):
handler.end(self.type)
self.inside = False
return False
class ParagraphRule(Rule):
type = 'paragraph'
def condition(self, block):
return True
补充utils.py:
代码如下:
def line(file):
for line in file:yield line
yield '\n'
def blocks(file):
block = []
for line in lines(file):
if line.strip():
block.append(line)
elif block:
yield ''.join(block).strip()
block = []
最后隆重的来看下“语法分析器模块”,这个模块的作用其实就是协调读入的文本和其他模块的关系。在往重点说就是,提供了两个存放“规则”和“过滤器”的列表,这么做的好处就是使得整个程序的灵活性得到了极大的提高,使得规则和过滤器变成的热插拔的方式,当然这个也归功于前面在写规则和过滤器时每一种类型的规则(过滤器)都单独的写成了一个类,而不是用if..else来区分。 看代码:
代码如下:
import sys, re
from handlers import *
from util import *
from rules import *
class Parser:
def __init__(self,handler):
self.handler = handler
self.rules = []
self.filters = []
def addRule(self, rule):
self.rules.append(rule)
def addFilter(self,pattern,name):
def filter(block, handler):
return re.sub(pattern, handler.sub(name),block)
self.filters.append(filter)
def parse(self, file):
self.handler.start('document')
for block in blocks(file):
for filter in self.filters:
block = filter(block, self.handler)
for rule in self.rules:
if rule.condition(block):
last = rule.action(block, self.handler)
if last:break
self.handler.end('document')
class BasicTextParser(Parser):
def __init__(self,handler):
Parser.__init__(self,handler)
self.addRule(ListRule())
self.addRule(ListItemRule())
self.addRule(TitleRule())
self.addRule(HeadingRule())
self.addRule(ParagraphRule())
self.addFilter(r'\*(.+?)\*', 'emphasis')
self.addFilter(r'(http://[\.a-z0-9A-Z/]+)', 'url')
self.addFilter(r'([\.a-zA-Z]+@[\.a-zA-Z]+[a-zA-Z]+)','mail')
handler = HTMLRenderer()
parser = BasicTextParser(handler)
parser.parse(sys.stdin)
这个模块里面的处理思路是,遍历客户端(也就是程序执行的入口)给插进去的所有的规则和过滤器,来处理读进来的文本。
有一个细节的地方也要说一下,其实是和前面写的呼应一下,就是在遍历规则的时候通过调用condition这个东西来判断是否符合当前规则。
我觉得这个程序很像是命令行模式,有空可以复习一下该模式,以保持记忆网节点的牢固性。
最后说一下我以为的这个程序的用途:
1、用来做代码高亮分析,如果改写成js版的话,可以做一个在线代码编辑器。
2、可以用来学习,供我写博文用。
还有其他的思路,可以留下您的真知灼见。
补充一个类图,很简陋,但是应该能说明之间的关系。另外我还是建议如果看代码捋不清关系最好自己画图,自己画图才能熟悉整个结构。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonの実際のアプリケーションには、データ分析、Web開発、人工知能、自動化が含まれます。 1)データ分析では、PythonはPandasとMatplotlibを使用してデータを処理および視覚化します。 2)Web開発では、DjangoおよびFlask FrameworksがWebアプリケーションの作成を簡素化します。 3)人工知能の分野では、TensorflowとPytorchがモデルの構築と訓練に使用されます。 4)自動化に関しては、ファイルのコピーなどのタスクにPythonスクリプトを使用できます。

Pythonは、データサイエンス、Web開発、自動化スクリプトフィールドで広く使用されています。 1)データサイエンスでは、PythonはNumpyやPandasなどのライブラリを介してデータ処理と分析を簡素化します。 2)Web開発では、DjangoおよびFlask Frameworksにより、開発者はアプリケーションを迅速に構築できます。 3)自動化されたスクリプトでは、Pythonのシンプルさと標準ライブラリが理想的になります。

Pythonの柔軟性は、マルチパラダイムサポートと動的タイプシステムに反映されていますが、使いやすさはシンプルな構文とリッチ標準ライブラリに由来しています。 1。柔軟性:オブジェクト指向、機能的および手続き的プログラミングをサポートし、動的タイプシステムは開発効率を向上させます。 2。使いやすさ:文法は自然言語に近く、標準的なライブラリは幅広い機能をカバーし、開発プロセスを簡素化します。

Pythonは、初心者から上級開発者までのすべてのニーズに適した、そのシンプルさとパワーに非常に好まれています。その汎用性は、次のことに反映されています。1)学習と使用が簡単、シンプルな構文。 2)Numpy、Pandasなどの豊富なライブラリとフレームワーク。 3)さまざまなオペレーティングシステムで実行できるクロスプラットフォームサポート。 4)作業効率を向上させるためのスクリプトおよび自動化タスクに適しています。

はい、1日2時間でPythonを学びます。 1.合理的な学習計画を作成します。2。適切な学習リソースを選択します。3。実践を通じて学んだ知識を統合します。これらの手順は、短時間でPythonをマスターするのに役立ちます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

SublimeText3 中国語版
中国語版、とても使いやすい

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール
