问题:
例如我们要选从不同省份选取一个号码,每个省份的权重不一样,直接选随机数肯定是不行的了,就需要一个模型来解决这个问题。
简化成下面的问题:
字典的key代表是省份,value代表的是权重,我们现在需要一个函数,每次基于权重选择一个省份出来
{"A":2, "B":2, "C":4, "D":10, "E": 20}
解决:
这是能想到和能看到的最多的版本,不知道还没有更高效好用的算法。
#!/usr/bin/env python # -*- coding: utf-8 -*- #python2.7x #random_weight.py #author: orangleliu@gmail.com 2014-10-11 ''''' 每个元素都有权重,然后根据权重随机取值 输入 {"A":2, "B":2, "C":4, "D":10, "E": 20} 输出一个值 ''' import random import collections as coll data = {"A":2, "B":2, "C":4, "D":6, "E": 11} #第一种 根据元素权重值 "A"*2 ..等,把每个元素取权重个元素放到一个数组中,然后最数组下标取随机数得到权重 def list_method(): all_data = [] for v, w in data.items(): temp = [] for i in range(w): temp.append(v) all_data.extend(temp) n = random.randint(0,len(all_data)-1) return all_data[n] #第二种 也是要计算出权重总和,取出一个随机数,遍历所有元素,把权重相加sum,当sum大于等于随机数字的时候停止,取出当前的元组 def iter_method(): total = sum(data.values()) rad = random.randint(1,total) cur_total = 0 res = "" for k, v in data.items(): cur_total += v if rad<= cur_total: res = k break return res def test(method): dict_num = coll.defaultdict(int) for i in range(100): dict_num[eval(method)] += 1 for i,j in dict_num.items(): print i, j if __name__ == "__main__": test("list_method()") print "-"*50 test("iter_method()")
一次执行的结果
A 4 C 14 B 7 E 44 D 31 -------------------------------------------------- A 8 C 16 B 6 E 43 D 27
思路:
思路都很原始可以参考下面的连接,还有别的好方法一起交流!!
代码: https://gist.github.com/orangle/d83bec8984d0b4293710
参考:
http://www.bitsCN.com/article/65060.htm
http://www.bitsCN.com/article/65058.htm

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonまたはCの選択は、プロジェクトの要件に依存します。1)迅速な開発、データ処理、およびプロトタイプ設計が必要な場合は、Pythonを選択します。 2)高性能、低レイテンシ、および緊密なハードウェアコントロールが必要な場合は、Cを選択します。

毎日2時間のPython学習を投資することで、プログラミングスキルを効果的に改善できます。 1.新しい知識を学ぶ:ドキュメントを読むか、チュートリアルを見る。 2。練習:コードと完全な演習を書きます。 3。レビュー:学んだコンテンツを統合します。 4。プロジェクトの実践:実際のプロジェクトで学んだことを適用します。このような構造化された学習計画は、Pythonを体系的にマスターし、キャリア目標を達成するのに役立ちます。

2時間以内にPythonを効率的に学習する方法は次のとおりです。1。基本的な知識を確認し、Pythonのインストールと基本的な構文に精通していることを確認します。 2。変数、リスト、関数など、Pythonのコア概念を理解します。 3.例を使用して、基本的および高度な使用をマスターします。 4.一般的なエラーとデバッグテクニックを学習します。 5.リストの概念を使用したり、PEP8スタイルガイドに従ったりするなど、パフォーマンスの最適化とベストプラクティスを適用します。

Pythonは初心者やデータサイエンスに適しており、Cはシステムプログラミングとゲーム開発に適しています。 1. Pythonはシンプルで使いやすく、データサイエンスやWeb開発に適しています。 2.Cは、ゲーム開発とシステムプログラミングに適した、高性能と制御を提供します。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Pythonはデータサイエンスと迅速な発展により適していますが、Cは高性能およびシステムプログラミングにより適しています。 1. Python構文は簡潔で学習しやすく、データ処理と科学的コンピューティングに適しています。 2.Cには複雑な構文がありますが、優れたパフォーマンスがあり、ゲーム開発とシステムプログラミングでよく使用されます。

Pythonを学ぶために1日2時間投資することは可能です。 1.新しい知識を学ぶ:リストや辞書など、1時間で新しい概念を学びます。 2。練習と練習:1時間を使用して、小さなプログラムを書くなどのプログラミング演習を実行します。合理的な計画と忍耐力を通じて、Pythonのコアコンセプトを短時間で習得できます。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

WebStorm Mac版
便利なJavaScript開発ツール

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

メモ帳++7.3.1
使いやすく無料のコードエディター

ホットトピック









