字符串是Python中最常用的数据类型,而且很多时候你会用到一些不属于标准ASCII字符集的字符,这时候代码就很可能抛出UnicodeDecodeError: 'ascii' codec can't decode byte 0xc4 in position 10: ordinal not in range(128)异常。这种异常在Python中很容易遇到,尤其是在Python2.x中,是一个很让初学者费解头疼的问题。不过,如果你理解了Python的Unicode,并在编码中遵循一定的原则,这种编码问题还是比较容易理解和解决的。
字符串在Python内部的表示是unicode编码,因此,在做编码转换时,通常需要以unicode作为中间编码,即先将其他编码的字符串解码(decode)成unicode,再从unicode编码(encode)成另一种编码。但是,Python 2.x的默认编码格式是ASCII,就是说,在没有指定Python源码编码格式的情况下,源码中的所有字符都会被默认为ASCII码。也因为这个根本原因,在Python 2.x中经常会遇到UnicodeDecodeError或者UnicodeEncodeError的异常。
关于Unicode
Unicode是一种字符集,它为每一种现代或古代使用的文字系统中出现的每一个字符都提供了统一的序列号,规定了符号的二进制代码,但没有规定这个二进制代码应该如何存储。也就是说:Unicode的编码方式是固定的,但是实现方式根据不同的需要有跟多种,常见的有UTF-8、UTF-16和UTF-32等。更多的介绍大家可以参看维基百科:Unicode
为了能够处理Unicode数据,同时兼容Python某些内部模块,Python 2.x中提供了Unicode这种数据类型,通过decode和encode方法可以将其它编码和Unicode编码相互转化,但同时也引入了UnicodeDecodeError和UnicodeEncodeError异常。。
常见的几种编码异常
Python中常见的几种编码异常有SyntaxError: Non-ASCII character、UnicodeDecodeError和UnicodeEncodeError等。下面依次举例说明一下:
1、SyntaxError: Non-ASCII character
这种异常最不容易出现,也最容易处理,主要原因是Python源码文件中有非ASCII字符,而且同时没有声明源码编码格式,例如:
s = '中文' print s # 抛出异常
2、UnicodeDecodeError
这个异常有时候会在调用decode方法时出现,原因是Python打算将其他编码的字符转化为Unicode编码,但是字符本身的编码格式和decode方法传入的编码格式不一致,例如:
#!/usr/bin/python # -*- coding: utf-8 -*- s = '中文' s.decode('gb2312') # UnicodeDecodeError: 'gb2312' codec can't decode bytes in position 2-3: illegal multibyte sequence print s
上面这段代码中字符串s的编码格式是utf-8,但是在使用decode方法转化为Unicode编码时传入的参数是‘gb2312',因此在转化的时候抛出UnicodeDecodeError异常。还有一种情况是在encode的时候:
#!/usr/bin/python # -*- coding: utf-8 -*- s = '中文' s.encode('gb2312') # UnicodeDecodeError: 'ascii' codec can't decode byte 0xe4 in position 0: ordinal not in range(128) print s
3、UnicodeEncodeError
错误的使用decode和encode方法会出现这种异常,比如:使用decode方法将Unicode字符串转化的时候:
#!/usr/bin/python # -*- coding: utf-8 -*- s = u'中文' s.decode('utf-8') # UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-1: ordinal not in range(128) print s
当然,除了上面列出的几种出现异常的情况之外还有很多可能出现异常的例子,这里就不在一一说明了。
解决方法
对于以上的几个异常,有以下几个处理的方法和原则。
1、遵循PEP0263原则,声明编码格式
在PEP 0263 -- Defining Python Source Code Encodings中提出了对Python编码问题的最基本的解决方法:在Python源码文件中声明编码格式,最常见的声明方式如下:
#!/usr/bin/python # -*- coding: <encoding name> -*-
其中
2、使用u'中文'替代'中文'
str1 = '中文编码' str2 = u'中文编码'
Python中有以上两种声明字符串变量的方式,它们的主要区别是编码格式的不同,其中,str1的编码格式和Python文件声明的编码格式一致,而str2的编码格式则是Unicode。如果你要声明的字符串变量中存在非ASCII的字符,那么最好使用str2的声明格式,这样你就可以不需要执行decode,直接对字符串进行操作,可以避免一些出现异常的情况。
3、Reset默认编码
Python中出现这么多编码问题的根本原因是Python 2.x的默认编码格式是ASCII,所以你也可以通过以下的方式修改默认的编码格式:
import sys sys.setdefaultencoding('utf-8')
这种方法是可以解决部分编码问题,但是同时也会引入很多其他问题,得不偿失,不建议使用这种方式。
4、终极原则:decode early, unicode everywhere, encode late
最后分享一个终极原则:decode early, unicode everywhere, encode late,即:在输入或者声明字符串的时候,尽早地使用decode方法将字符串转化成unicode编码格式;然后在程序内使用字符串的时候统一使用unicode格式进行处理,比如字符串拼接、字符串替换、获取字符串的长度等操作;最后,在输出字符串的时候(控制台/网页/文件),通过encode方法将字符串转化为你所想要的编码格式,比如utf-8等。
按照这个原则处理Python的字符串,基本上可以解决所有的编码问题(只要你的代码和Python环境没有问题)。。。
5、升级Python 2.x到3.x
额,最后一个方法,升级Python 2.x,使用Python 3.x版本。。这样说主要是为了吐槽Python 2.x的编码设计问题。当然,升级到Python 3.x肯定可以解决大部分因为编码产生的异常问题。毕竟Python 3.x版本对字符串这部分还是做了相当大的改进的,具体的下面会说。。。。
Python 3.x中的Unicode
在Python 3.0之后的版本中,所有的字符串都是使用Unicode编码的字符串序列,同时还有以下几个改进:
1、默认编码格式改为unicode
2、所有的Python内置模块都支持unicode
3、不再支持u'中文'的语法格式
所以,对于Python 3.x来说,编码问题已经不再是个大的问题,基本上很少遇到上述的几个异常。关于Python 2.x str&unicode和Python 3.x str&bytes的更多说明和对比,大家可以看一下:Python中字符编码的总结和对比

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonの実際のアプリケーションには、データ分析、Web開発、人工知能、自動化が含まれます。 1)データ分析では、PythonはPandasとMatplotlibを使用してデータを処理および視覚化します。 2)Web開発では、DjangoおよびFlask FrameworksがWebアプリケーションの作成を簡素化します。 3)人工知能の分野では、TensorflowとPytorchがモデルの構築と訓練に使用されます。 4)自動化に関しては、ファイルのコピーなどのタスクにPythonスクリプトを使用できます。

Pythonは、データサイエンス、Web開発、自動化スクリプトフィールドで広く使用されています。 1)データサイエンスでは、PythonはNumpyやPandasなどのライブラリを介してデータ処理と分析を簡素化します。 2)Web開発では、DjangoおよびFlask Frameworksにより、開発者はアプリケーションを迅速に構築できます。 3)自動化されたスクリプトでは、Pythonのシンプルさと標準ライブラリが理想的になります。

Pythonの柔軟性は、マルチパラダイムサポートと動的タイプシステムに反映されていますが、使いやすさはシンプルな構文とリッチ標準ライブラリに由来しています。 1。柔軟性:オブジェクト指向、機能的および手続き的プログラミングをサポートし、動的タイプシステムは開発効率を向上させます。 2。使いやすさ:文法は自然言語に近く、標準的なライブラリは幅広い機能をカバーし、開発プロセスを簡素化します。

Pythonは、初心者から上級開発者までのすべてのニーズに適した、そのシンプルさとパワーに非常に好まれています。その汎用性は、次のことに反映されています。1)学習と使用が簡単、シンプルな構文。 2)Numpy、Pandasなどの豊富なライブラリとフレームワーク。 3)さまざまなオペレーティングシステムで実行できるクロスプラットフォームサポート。 4)作業効率を向上させるためのスクリプトおよび自動化タスクに適しています。

はい、1日2時間でPythonを学びます。 1.合理的な学習計画を作成します。2。適切な学習リソースを選択します。3。実践を通じて学んだ知識を統合します。これらの手順は、短時間でPythonをマスターするのに役立ちます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。
