这个问题是如何在一些场景下使用断言表达式,通常会有人误用它,所以我决定写一篇文章来说明何时使用断言,什么时候不用。
为那些还不清楚它的人,Python的assert是用来检查一个条件,如果它为真,就不做任何事。如果它为假,则会抛出AssertError并且包含错误信息。例如:
py> x = 23 py> assert x > 0, "x is not zero or negative" py> assert x%2 == 0, "x is not an even number" Traceback (most recent call last): File "", line 1, in AssertionError: x is not an even number
很多人用assert作为一个很快和容易的方法来在参数错误的时候抛出异常。但这样做是错的,非常错误,有两个原因。首先AssertError不是在测试参数时应该抛出的错误。你不应该像这样写代码:
if not isinstance(x, int): raise AssertionError("not an int")
你应该抛出TypeError的错误,assert会抛出错误的异常。
但是,更危险的是,有一个关于assert的困扰:它可以被编译好然后从来不执行,如果你用 –O 或 –oo 选项运行Python,结果不保证assert表达式会运行到。当适当的使用assert时,这是未来,但是当assert不恰当的使用时,它会让代码用-O执行时出错。
那什么时候应该使用assert?没有特定的规则,断言应该用于:
- 防御型的编程
- 运行时检查程序逻辑
- 检查约定
- 程序常量
- 检查文档
(在测试代码的时候使用断言也是可接受的,是一种很方便的单元测试方法,你接受这些测试在用-O标志运行时不会做任何事。我有时在代码里使用assert False来标记没有写完的代码分支,我希望这些代码运行失败。尽管抛出NotImplementedError可能会更好。)
关于断言的意见有很多,因为它能确保代码的正确性。如果你确定代码是正确的,那么就没有用断言的必要了,因为他们从来不会运行失败,你可以直接移除这些断言。如果你确定检查会失败,那么如果你不用断言,代码就会通过编译并忽略你的检查。
在以上两种情况下会很有意思,当你比较肯定代码但是不是绝对肯定时。可能你会错过一些非常古怪的情况。在这个情况下,额外的运行时检查能帮你确保任何错误都会尽早地被捕捉到。
另一个好的使用断言的方式是检查程序的不变量。一个不变量是一些你需要依赖它为真的情况,除非一个bug导致它为假。如果有bug,最好能够尽早发现,所以我们为它进行一个测试,但是又不想减慢代码运行速度。所以就用断言,因为它能在开发时打开,在产品阶段关闭。
一个非变量的例子可能是,如果你的函数希望在它开始时有数据库的连接,并且承诺在它返回的时候仍然保持连接,这就是函数的不变量:
def some_function(arg): assert not DB.closed() ... # code goes here assert not DB.closed() return result
断言本身就是很好的注释,胜过你直接写注释:
# when we reach here, we know that n > 2
你可以通过添加断言来确保它:
assert n > 2
断言也是一种防御型编程。你不是让你的代码防御现在的错误,而是防止在代码修改后引发的错误。理想情况下,单元测试可以完成这样的工作,可是需要面对的现实是,它们通常是没有完成的。人们可能在提交代码前会忘了运行测试代码。有一个内部检查是另一个阻挡错误的防线,尤其是那些不明显的错误,却导致了代码出问题并且返回错误的结果。
加入你有一些if…elif 的语句块,你知道在这之前一些需要有一些值:
# target is expected to be one of x, y, or z, and nothing else. if target == x: run_x_code() elif target == y: run_y_code() else: run_z_code()
假设代码现在是完全正确的。但它会一直是正确的吗?依赖的修改,代码的修改。如果依赖修改成 target = w 会发生什么,会关系到run_w_code函数吗?如果我们改变了代码,但没有修改这里的代码,可能会导致错误的调用 run_z_code 函数并引发错误。用防御型的方法来写代码会很好,它能让代码运行正确,或者立马执行错误,即使你在未来对它进行了修改。
在代码开头的注释很好的一步,但是人们经常懒得读或者更新注释。一旦发生这种情况,注释会变得没用。但有了断言,我可以同时对代码块的假设书写文档,并且在它们违反的时候触发一个干净的错误
assert target in (x, y, z) if target == x: run_x_code() elif target == y: run_y_code() else: assert target == z run_z_code()
这样,断言是一种防御型编程,同时也是一种文档。我想到一个更好的方案:
if target == x: run_x_code() elif target == y: run_y_code() elif target == z: run_z_code() else: # This can never happen. But just in case it does... raise RuntimeError("an unexpected error occurred")
按约定进行设计是断言的另一个好的用途。我们想象函数与调用者之间有个约定,比如下面的:
“如果你传给我一个非空字符串,我保证传会字符串的第一个字母并将其大写。”
如果约定被函数或调用这破坏,代码就会出问题。我们说函数有一些前置条件和后置条件,所以函数就会这么写:
def first_upper(astring): assert isinstance(astring, str) and len(astring) > 0 result = astring[0].upper() assert isinstance(result, str) and len(result) == 1 assert result == result.upper() return result
按约定设计的目标是为了正确的编程,前置条件和后置条件是需要保持的。这是断言的典型应用场景,因为一旦我们发布了没有问题的代码到产品中,程序会是正确的,并且我们能安全的移除检查。
下面是我建议的不要用断言的场景:
- 不要用它测试用户提供的数据
- 不要用断言来检查你觉得在你的程序的常规使用时会出错的地方。断言是用来检查非常罕见的问题。你的用户不应该看到任何断言错误,如果他们看到了,这是一个bug,修复它。
- 有的情况下,不用断言是因为它比精确的检查要短,它不应该是懒码农的偷懒方式。
- 不要用它来检查对公共库的输入参数,因为它不能控制调用者,所以不能保证调用者会不会打破双方的约定。
- 不要为你觉得可以恢复的错误用断言。换句话说,不用改在产品代码里捕捉到断言错误。
- 不要用太多断言以至于让代码很晦涩。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

PythonとCは、メモリ管理と制御に大きな違いがあります。 1。Pythonは、参照カウントとガベージコレクションに基づいて自動メモリ管理を使用し、プログラマーの作業を簡素化します。 2.Cには、メモリの手動管理が必要であり、より多くの制御を提供しますが、複雑さとエラーのリスクが増加します。どの言語を選択するかは、プロジェクトの要件とチームテクノロジースタックに基づいている必要があります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

PythonまたはCを選択するかどうかは、プロジェクトの要件に依存するかどうかは次のとおりです。1)Pythonは、簡潔な構文とリッチライブラリのため、迅速な発展、データサイエンス、スクリプトに適しています。 2)Cは、コンピレーションと手動メモリ管理のため、システムプログラミングやゲーム開発など、高性能および基礎となる制御を必要とするシナリオに適しています。

Pythonは、データサイエンスと機械学習で広く使用されており、主にそのシンプルさと強力なライブラリエコシステムに依存しています。 1)Pandasはデータ処理と分析に使用され、2)Numpyが効率的な数値計算を提供し、3)SCIKIT-LEARNは機械学習モデルの構築と最適化に使用されます。これらのライブラリは、Pythonをデータサイエンスと機械学習に理想的なツールにします。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

Dreamweaver Mac版
ビジュアル Web 開発ツール

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。
