ホームページ >Java >&#&チュートリアル >Javaビッグデータ処理フレームワークのケーススタディ
Java ビッグ データ処理フレームワークの実用化のケース スタディには、次の 2 つの点が含まれます。Apache Spark は、機器の故障を検出および予測するためのリアルタイム ストリーミング データ処理に使用されます。 Hadoop MapReduce は、ログ ファイルから貴重な情報を抽出するためのバッチ データ処理に使用されます。
Java ビッグ データ処理フレームワークのケース スタディ
データの爆発的な増加に伴い、ビッグ データ処理は現代的な企業になりました欠かせない部品。 Apache Spark や Hadoop などの Java ビッグ データ処理フレームワークは、大量のデータを処理および分析するための強力な機能を提供します。
#1. Apache Spark のケーススタディ
解決策:
// 创建 Spark StreamingContext SparkConf conf = new SparkConf().setAppName("StreamingExample"); JavaStreamingContext jsc = new JavaStreamingContext(conf, Durations.seconds(5)); // 定义从 Kafka 接收数据的 DataStream JavaDStream<String> lines = jsc.socketTextStream("localhost", 9999); // 处理数据,检测并预测设备故障 JavaDStream<String> alerts = lines.flatMap(new FlatMapFunction<String, String>() { public Iterator<String> call(String line) { // 分割数据并检测故障 String[] parts = line.split(","); if (Integer.parseInt(parts[1]) > 100) { return Arrays.asList("故障:设备 " + parts[0]).iterator(); } return Collections.emptyIterator(); } }); // 聚合告警并输出到控制台 alerts.foreachRDD(new Function<JavaRDD<String>, Void>() { public Void call(JavaRDD<String> rdd) { rdd.foreach(System.out::println); return null; } }); // 启动流处理 jsc.start(); jsc.awaitTermination();
2. Hadoop のケーススタディ
解決策:
// 编写 Mapper 类 public class LogMapper implements Mapper<LongWritable, Text, Text, IntWritable> { public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] parts = value.toString().split(","); context.write(new Text(parts[0]), new IntWritable(1)); } } // 编写 Reducer 类 public class LogReducer implements Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable value : values) { sum += value.get(); } context.write(key, new IntWritable(sum)); } } // 配置 Hadoop 作业 Configuration conf = new Configuration(); conf.set("mapred.job.name", "LogAnalysis"); conf.set("mapred.input.dir", "/input"); conf.set("mapred.output.dir", "/output"); // 提交作业 Job job = Job.getInstance(conf, "LogAnalysis"); job.setJarByClass(LogAnalysis.class); job.setMapperClass(LogMapper.class); job.setReducerClass(LogReducer.class); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); job.waitForCompletion(true);これらのケースは、実際に Java ビッグ データ処理フレームワークの強力なアプリケーションを示しています。 Apache Spark と Hadoop のパワーを活用することで、企業は大量のデータを効率的に処理し、そこから貴重な情報を抽出できます。
以上がJavaビッグデータ処理フレームワークのケーススタディの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。