検索
ホームページテクノロジー周辺機器AI大規模な言語モデルがアクティベーション関数として SwiGLU を使用するのはなぜですか?

如果你一直在关注大型语言模型的架构,你可能会在最新的模型和研究论文中看到“SwiGLU”这个词。SwiGLU可以说是在大语言模型中最常用到的激活函数,我们本篇文章就来对它进行详细的介绍。SwiGLU其实是2020年谷歌提出的激活函数,它结合了SWISH和GLU两者的特点。 SwiGLU的中文全称是“双向门控线性单元”,它将SWISH和GLU两种激活函数进行了优化和结合,以提高模型的非线性表达能力。SWISH是一种非常普遍的激活函数,它在大语言模型中得到广泛应用,而GLU则在自然语言处理任务中表现出色。 SwiGLU的优点在于它能够同时获取SWISH的平滑特性和GLU的门控特性,从而在模型的非线性表达上更加

为什么大型语言模型都在使用 SwiGLU 作为激活函数?

我们一个一个来介绍:

Swish

Swish是一个非线性激活函数,定义如下:

Swish(x) = x*sigmoid(ßx)

为什么大型语言模型都在使用 SwiGLU 作为激活函数?

其中,ß 为可学习参数。Swish 可以比ReLU激活函数更好,因为它给予了更平滑的转换,这可以带来更好的优化。

Gated Linear Unit

GLU(Gated Linear Unit)定义为两个线性变换的分量积,其中一个线性变换由sigmoid激活。

GLU(x) = sigmoid(W1x+b)⊗(Vx+c)

为什么大型语言模型都在使用 SwiGLU 作为激活函数?

GLU模块可以有效地捕获序列中的远程依赖关系,同时避免了LSTM和GRU等其他门控机制相关的一些梯度消失问题。

SwiGLU

我们已经说过SwiGLU是两者的结合。它是一个GLU,但不是将sigmoid作为激活函数,而是使用ß=1的swish,因此我们最终得到以下公式:

SwiGLU(x) = Swish(W1x+b)⊗(Vx+c)

我们用SwiGLU函数构造一个前馈网络

FFNSwiGLU(x) = (Swish1(xW)⊗xV)W2

Pytorch的简单实现

如果上面的数学原理看着比较麻烦枯燥难懂,我们下面直接使用代码解释。

class SwiGLU(nn.Module): def __init__(self, w1, w2, w3) -> None:super().__init__()self.w1 = w1self.w2 = w2self.w3 = w3 def forward(self, x):x1 = F.linear(x, self.w1.weight)x2 = F.linear(x, self.w2.weight)hidden = F.silu(x1) * x2return F.linear(hidden, self.w3.weight)

コードで使用されている F.silu 関数は、ß=1 の場合の swish と同じであるため、それを直接使用します。

コードからわかるように、活性化関数にはトレーニング可能な 3 つの重みがあり、これらは GLU 式のパラメーターです。

SwiGLU の効果の比較

SwiGLU を他の GLU バリアントと比較すると、SwiGLU が両方の事前トレーニング期間で良好なパフォーマンスを発揮していることがわかります。より良い。

为什么大型语言模型都在使用 SwiGLU 作为激活函数?

#下流タスク

为什么大型语言模型都在使用 SwiGLU 作为激活函数?

効果は最高です。そのため、現在、LLAMA、OLMO、PALM などの llm はすべて実装で SwiGLU を使用しています。しかし、なぜ SwiGLU が他のものよりも優れているのでしょうか?

この論文では、テスト結果のみが示されており、その理由については説明されていません。代わりに、次のように書かれています。なぜこれらのアーキテクチャが機能するように見えるのかについては、他のすべてと同様に、それらの成功も神の慈悲によるものだと考えています。

著者は、錬金術は成功したと言いました。

しかし、今は 2024 年なので、それを強く説明できます:

#1. 負の値に対する Swish の反応は比較的小さいです。一部のニューロンの出力が常にゼロになるという ReLU の欠点を克服します

#2. GLU のゲート特性、つまりどの情報を通過させ、どの情報を通過させるかを決定できる入力状況に応じて情報をフィルタリングする必要があります。このメカニズムにより、ネットワークは有用な表現をより効果的に学習できるようになり、モデルの汎化能力の向上に役立ちます。大規模な言語モデルでは、これは長距離の依存関係を持つ長いテキスト シーケンスを処理する場合に特に役立ちます。

3. SwiGLU のパラメータ W1、W2、W3、b1、b2、b3 W1、W2、W3、b1、b2、b3 はトレーニングを通じて学習できるため、モデルはデータセットを使用してこれらのパラメータを動的に調整すると、モデルの柔軟性と適応性が向上します。

4. 計算効率は、より複雑な活性化関数 (GELU など) よりも高く、良好なパフォーマンスを維持します。これは、大規模な言語モデルのトレーニングと推論にとって重要な考慮事項です。

大規模言語モデルのアクティベーション関数として SwiGLU を選択します。主な理由は、SwiGLU が非線形機能、ゲート特性、勾配の安定性、学習可能なパラメーターの利点を組み合わせているからです。 SwiGLU は、言語モデルにおける複雑な意味関係や長い依存関係の問題を処理する上で優れたパフォーマンスを発揮し、トレーニングの安定性と計算効率を維持できるため、広く採用されています。

#紙のアドレス

#https://www.php.cn/link/86e33d550dc162366a02003089ab9894

以上が大規模な言語モデルがアクティベーション関数として SwiGLU を使用するのはなぜですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
Gemma Scope:AI'の思考プロセスを覗くためのGoogle'の顕微鏡Gemma Scope:AI'の思考プロセスを覗くためのGoogle'の顕微鏡Apr 17, 2025 am 11:55 AM

ジェマの範囲で言語モデルの内部の仕組みを探る AI言語モデルの複雑さを理解することは、重要な課題です。 包括的なツールキットであるGemma ScopeのGoogleのリリースは、研究者に掘り下げる強力な方法を提供します

ビジネスインテリジェンスアナリストは誰で、どのようになるか?ビジネスインテリジェンスアナリストは誰で、どのようになるか?Apr 17, 2025 am 11:44 AM

ビジネスの成功のロック解除:ビジネスインテリジェンスアナリストになるためのガイド 生データを組織の成長を促進する実用的な洞察に変換することを想像してください。 これはビジネスインテリジェンス(BI)アナリストの力です - GUにおける重要な役割

SQLに列を追加する方法は? - 分析VidhyaSQLに列を追加する方法は? - 分析VidhyaApr 17, 2025 am 11:43 AM

SQLの変更テーブルステートメント:データベースに列を動的に追加する データ管理では、SQLの適応性が重要です。 その場でデータベース構造を調整する必要がありますか? Alter Tableステートメントはあなたの解決策です。このガイドの詳細は、コルを追加します

ビジネスアナリストとデータアナリストビジネスアナリストとデータアナリストApr 17, 2025 am 11:38 AM

導入 2人の専門家が重要なプロジェクトで協力している賑やかなオフィスを想像してください。 ビジネスアナリストは、会社の目標に焦点を当て、改善の分野を特定し、市場動向との戦略的整合を確保しています。 シム

ExcelのCountとCountaとは何ですか? - 分析VidhyaExcelのCountとCountaとは何ですか? - 分析VidhyaApr 17, 2025 am 11:34 AM

Excelデータカウントと分析:カウントとカウントの機能の詳細な説明 特に大規模なデータセットを使用する場合、Excelでは、正確なデータカウントと分析が重要です。 Excelは、これを達成するためにさまざまな機能を提供し、CountおよびCounta関数は、さまざまな条件下でセルの数をカウントするための重要なツールです。両方の機能はセルをカウントするために使用されますが、設計ターゲットは異なるデータ型をターゲットにしています。 CountおよびCounta機能の特定の詳細を掘り下げ、独自の機能と違いを強調し、データ分析に適用する方法を学びましょう。 キーポイントの概要 カウントとcouを理解します

ChromeはAIと一緒にここにいます:毎日何か新しいことを体験してください!!ChromeはAIと一緒にここにいます:毎日何か新しいことを体験してください!!Apr 17, 2025 am 11:29 AM

Google Chrome'sAI Revolution:パーソナライズされた効率的なブラウジングエクスペリエンス 人工知能(AI)は私たちの日常生活を急速に変換しており、Google ChromeはWebブラウジングアリーナで料金をリードしています。 この記事では、興奮を探ります

ai' s Human Side:Wellbeing and the Quadruple bottuntai' s Human Side:Wellbeing and the Quadruple bottuntApr 17, 2025 am 11:28 AM

インパクトの再考:四重材のボトムライン 長い間、会話はAIの影響の狭い見方に支配されており、主に利益の最終ラインに焦点を当てています。ただし、より全体的なアプローチは、BUの相互接続性を認識しています

5ゲームを変える量子コンピューティングの使用ケースあなたが知っておくべきである5ゲームを変える量子コンピューティングの使用ケースあなたが知っておくべきであるApr 17, 2025 am 11:24 AM

物事はその点に向かって着実に動いています。量子サービスプロバイダーとスタートアップに投資する投資は、業界がその重要性を理解していることを示しています。そして、その価値を示すために、現実世界のユースケースの数が増えています

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境