検索
ホームページテクノロジー周辺機器AI精度 >98%、電子密度に基づく GPT は化学研究に使用され、Nature サブジャーナルに掲載

准确率 >98%、電子密度に基づく GPT は化学研究に使用され、Nature サブジャーナルに掲載されました」 /></p><p>編集者 | Violet</p><p>合成分子の化学空間この分野を効果的に探索するには、さまざまな興味深い化合物を迅速に発見するために、深層学習などの計算スクリーニング技術に頼る必要があります。</p><p>分子構造をデジタル表現に変換し、対応するアルゴリズムを開発して新しい分子構造を生成する</p><p>最近、イギリスのグラスゴー大学の研究チームは、ホスト-ゲスト結合体を生成するための電子密度トレーニングに基づいた機械学習モデルを提案しました。このモデルは分子を単純化できます。最大 98% の精度で線形入力仕様 (SMILES) 形式で読み取られるため、2 次元空間内の分子の包括的な記述が実現します。 </p><p> ホストとゲストの電子密度と静電荷を生成します変分オートエンコーダによるシステムのポテンシャルの三次元表現、勾配降下法によるゲスト生成の最適化、最後にTransformerを用いてゲストをSMILESに変換することでゲスト構造の効果的な表現と変換を実現 </p><p>モデルは確立された分子にうまく適用されました。宿主システムであるククルビットウリルと有機金属ケージにより、以前に検証された 9 つの CB[6] ゲストと 7 つの未報告のゲストが発見され、4 つの未報告のゲストが発見されました <img src=

論文リンク: https://www.nature.com /articles/ s43588-024-00602-x

現在のホストゲスト化学研究は労力と費用がかかります

SMILES などの文字列、分子は「単語」で表現されます。 「C1C=C1 」 (シクロプロペン) などの、最も広く普及している分子の数値表現の 1 つです。最先端の自然言語処理を使用することで、これらの表現はリカレント ニューラル ネットワークや Transformer モデルなどの AI テクノロジーと直接互換性があります。

分子を 3D ボリュームとして表現する利点は、畳み込みニューラル ネットワークなどの最新の AI テクノロジを適用できることです。これまで、分子記述子としての 3D ボリュームの応用のほとんどは、特性の予測や新規薬剤設計に焦点を当ててきました。しかし、3D ボリュームを分子記述子として使用することは、現在、これらのボリュームを明確な分子構造に関連付ける効率的な方法がないために妨げられています。

過去 40 年間にわたり、キャビティ内のバルク相から分子を隔離することで分子の化学的および物理的特性を変化させる傾向のある分子容器 (中空有機分子または中空超分子構造) に主な焦点が当てられてきました。オブジェクト システムはますます研究されています。ホストゲストシステムには、触媒作用から生体医工学、材料科学、反応性分子の安定化まで、幅広い用途があります。

ククルビットウリル (CB[n]) と有機金属ケージは、最も成功した分子容器設計の 1 つです。ホスト - ゲストの化学は目覚ましい成果を上げていますが、既存の系での報告されていないゲストの発見や、新しいホスト - ゲスト系の最適化は依然として手間と費用のかかる反復プロセスであり、科学の進歩のペースを妨げています。

電子密度でトレーニングされた機械学習モデル

ここでは、ホスト分子を 3D ボリューム (つまり、静電ポテンシャル密度で変更された電子) として表現できることが実証されています。ホストの化学構造を超えたホスト - ゲスト システムに関する知識がなくても、ホスト - ゲスト システムのコンピューター支援発見によって発見されました。

その過程で、研究者らは、3D 体積分子記述子を SMILES 表現に効率的に変換するようにトレーニングできる Transformer モデルを構築し、それによって専門の化学者が使用できる分子構造を生成しました。

研究ではまた、静電ポテンシャル データを使用して分子の電子密度を変更することで、分子を 3D ボリュームとして効果的に表現できること、およびこれら 2 つの特徴が、自己回帰サンプリング スキーム ボリュームの形状と電荷が相互作用してホストのゲスト分子を検出します。

准确率 >98%、電子密度に基づく GPT は化学研究に使用され、Nature サブジャーナルに掲載されました。
図: Transformer モデルを使用して電子密度を次のように変換します。 SMILES 表現、その後、勾配降下法によってターゲットの被写体のオブジェクトが最適化されます (出典: 論文)

Transformer モデルは、98.125% の精度で SMILES 表現を完全に予測します。単一トークンの予測精度は 99.114% です。Transformer のデコーダは、GPT などの純粋な生成モデルに分離することもできます。

ククルビットウリル CB[6] のコンピューター支援発見と金属有機ケージの実験的検証 精度 >98%、電子密度に基づく GPT は化学研究に使用され、Nature サブジャーナルに掲載 には 2 段階のワークフローが必要です。まず、両方のホストの潜在的なゲスト分子の仮想ライブラリを生成するために、インシリコ ワークフローが設計されました。次に、実験テストのために専門化学者がこれらの仮想ライブラリから最も有望なゲスト候補を選択することを含む、in vitro ワークフローが確立されました。

准确率 >98%、電子密度に基づく GPT は化学研究で使用され、Nature サブジャーナルに掲載されました。

図: 電子密度の体積表現を通じて新しいゲスト分子を発見します。 (出典: 論文)

CB[6] および 精度 >98%、電子密度に基づく GPT は化学研究に使用され、Nature サブジャーナルに掲載 ゲスト分子のコンピューター生成は、上図に示すワークフローを通じて実現されます。ワークフローには次のステップが含まれます:

(1) 3D 電子密度ボリューム トレーニング セットは、公開されている QM9 データセット内の分子から派生し、変分オートエンコーダー (VAE) を使用してこの 3D 電子密度ボリューム トレーニング セットをモデル化することで、

「分子ジェネレーター」。QM9 データセットから得られるものを超える 3D 電子密度ボリュームの生成を可能にします。 VAE 分子ジェネレーターは、3D 電子密度ボリュームを 1 次元 (1D) 潜在空間にエンコードし、この 1D 潜在空間からデコードすることで分子に対応する 3D 電子密度ボリュームを生成することによって機能します。興味深いことに、このアプローチでは化学的に健全な分子のみが生成されました。

(2) VAE 分子ジェネレーターと勾配降下最適化アルゴリズムを使用して、特定のホスト分子のゲスト分子のライブラリ (3D 電子密度ボリュームの形式) を生成します。ゲスト分子は、静電相互作用を最適化しながら、ホストとゲストの電子密度間の重複を最小限に抑えることによって作成されます。

(3) 人間のオペレーターにとって 3D 電子密度ボリュームを化学的に解釈可能な構造に変換するのは困難な場合があるため、Transformer モデルは専門家がより簡単にアクセスできる方法でこれらのボリュームを SMILES 表現に変換するようにトレーニングされました。化学者が理解できる形式には、分子を記述するために必要なすべての情報が含まれています。コンピューター シミュレーションを通じて CB[6] および 精度 >98%、電子密度に基づく GPT は化学研究に使用され、Nature サブジャーナルに掲載 の潜在的なゲスト分子を生成した後、最も有望な候補を実験的にテストするための in vitro ワークフローが確立されました。

使用した実験手順を以下に説明します。

(1) コンピューターワークフローによって生成された CB[6] と 精度 >98%、電子密度に基づく GPT は化学研究に使用され、Nature サブジャーナルに掲載 のオブジェクトは、実験的テストのために化学の専門家によって分類されます。テストに有望なゲストは、CB[6] または 精度 >98%、電子密度に基づく GPT は化学研究に使用され、Nature サブジャーナルに掲載 の既知のゲストとの構造的類似性、プロの化学者の直観、およびそれらの商業的入手可能性に基づいて選択されます。

(2) CB[6] または 准确率 > の親和性を決定するには、Nature サブジャーナルに掲載された化学研究用の電子密度に基づく直接 <img src=98% GPT 滴定法を使用します。これには価値があります。インシリコで生成されたゲストには、ホストに結合する (または密接に関係する) ことが以前に知られていた分子と、専門家の直感を無視する分子の混合物が含まれていることに注意してください。

2 つの一般的なホストとゲストの実験的検証システム

研究者らは、ククルビツリル (CB[n]) と有機金属ケージという 2 つの一般的なホスト - ゲスト システムのワークフローを実験的に検証しました。これらは文献で検証されているが報告されていないゲストになりました。

このアルゴリズムは、CB[6] について以前に知られていた 9 つのゲストを生成しました。また、化学者が実験的テストに値すると考えた CB[6] の 7 つの潜在的な新しいゲストも特定しました。CB[6] 新しいゲストの親和性は、直接 精度 >98%、電子密度に基づく GPT は化学研究に使用され、Nature サブジャーナルに掲載 HCO2H/H2O 1:1v/v での滴定

7 つのケースすべてで、ホスト-ゲスト システムの一連のシグナルが観察され、システムの急速な交換が NMR 時間スケールで起こっていることを示しました。錯体形成後、ゲスト分子の脂肪族鎖共鳴は高磁場にシフトし、ゲスト分子が CB[6] キャビティ内にカプセル化されていることを示します。 " /> CB[6] との結合定数は、13.5 M^-1 から 5,470 M^-1 の範囲で、以前に確立された傾向に従います。 准确率 ></p><p>98%、化学研究のための電子密度に基づく GPT、Nature サブジャーナルに掲載准确率 ></p>図: CB[6] と既知のゲストの最適化も<section> の最適化オブジェクトとして (出典: 論文) <img src=

の場合、最適化アルゴリズムは未知のゲスト分子、4 つの潜在的な未報告ゲスト、および [Pd214](BArF)4 のみを生成します。 4 つのケースすべてにおいて、[Pd214](BArF)4 に対するゲストの親和性は、CD2Cl2 における「小さな中性ゲスト」に対する以前に報告された親和性よりも低い範囲にあり、一貫していました (Ka は 44 M^-1 から 44 M^-1 まで) 529M^-1)。 精度 >98%、電子密度に基づく GPT は化学研究に使用され、Nature サブジャーナルに掲載精度 >98%、電子密度に基づく GPT は化学研究に使用され、Nature サブジャーナルに掲載研究では分子を表現するために SMILES 表記を使用することに焦点を当てましたが、Self-Referential Embedded Strings (SELFIES) などの他の同様の形式もテストされました。

QM9 データセットには、CB などの宿主のゲストになることができる完璧なサイズの分子が含まれています[6]が、この研究で遭遇した制限の 1 つは、金属有機ケージ 精度 >98%、電子密度に基づく GPT は化学研究に使用され、Nature サブジャーナルに掲載 の空洞が大きく、より大きな対象分子が必要であることです。将来の研究では、GDB-17 データセットなどのより大きな分子を含むデータセットが使用される予定です。

その後、「私たちの目標は、新しいリガンドの選択を生成プロセスに組み込み、自動合成プラットフォーム (Chemputer ロボットなど) で分子を自律的に合成し、最適化とテストの間のループを閉じて、サイバーフィジカルクローズドループシステム。」

以上が精度 >98%、電子密度に基づく GPT は化学研究に使用され、Nature サブジャーナルに掲載の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は机器之心で複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
1つのプロンプトは、すべての主要なLLMのセーフガードをバイパスできます1つのプロンプトは、すべての主要なLLMのセーフガードをバイパスできますApr 25, 2025 am 11:16 AM

HiddenLayerの画期的な研究は、主要な大規模な言語モデル(LLMS)における重大な脆弱性を明らかにしています。 彼らの発見は、ほぼすべての主要なLLMSを回避できる「政策の人形劇」と呼ばれる普遍的なバイパス技術を明らかにしています

5つの間違いほとんどの企業が今年持続可能性を備えています5つの間違いほとんどの企業が今年持続可能性を備えていますApr 25, 2025 am 11:15 AM

環境責任と廃棄物の削減の推進は、企業の運営方法を根本的に変えています。 この変革は、製品開発、製造プロセス、顧客関係、パートナーの選択、および新しいものの採用に影響します

H20チップバンジョルツチャイナ企業ですが、彼らはインパクトのために長い間支えられてきましたH20チップバンジョルツチャイナ企業ですが、彼らはインパクトのために長い間支えられてきましたApr 25, 2025 am 11:12 AM

高度なAIハードウェアに関する最近の制限は、AI優位のためのエスカレートする地政学的競争を強調し、中国の外国半導体技術への依存を明らかにしています。 2024年、中国は3,850億ドル相当の半導体を大量に輸入しました

OpenaiがChromeを購入すると、AIはブラウザ戦争を支配する場合がありますOpenaiがChromeを購入すると、AIはブラウザ戦争を支配する場合がありますApr 25, 2025 am 11:11 AM

GoogleからのChromeの強制的な売却の可能性は、ハイテク業界での激しい議論に火をつけました。 Openaiが65%の世界市場シェアを誇る大手ブラウザを取得する見込みは、THの将来について重要な疑問を提起します

AIが小売メディアの成長する痛みをどのように解決できるかAIが小売メディアの成長する痛みをどのように解決できるかApr 25, 2025 am 11:10 AM

全体的な広告の成長を上回っているにもかかわらず、小売メディアの成長は減速しています。 この成熟段階は、生態系の断片化、コストの上昇、測定の問題、統合の複雑さなど、課題を提示します。 ただし、人工知能

「aiは私たちであり、それは私たち以上のものです」「aiは私たちであり、それは私たち以上のものです」Apr 25, 2025 am 11:09 AM

古いラジオは、ちらつきと不活性なスクリーンのコレクションの中で静的なパチパチと鳴ります。簡単に不安定になっているこの不安定な電子機器の山は、没入型展示会の6つのインスタレーションの1つである「e-waste land」の核心を形成しています。

Google Cloudは、次の2025年にインフラストラクチャについてより深刻になりますGoogle Cloudは、次の2025年にインフラストラクチャについてより深刻になりますApr 25, 2025 am 11:08 AM

Google Cloudの次の2025年:インフラストラクチャ、接続性、およびAIに焦点を当てています Google Cloudの次の2025年の会議では、多くの進歩を紹介しました。 特定の発表の詳細な分析については、私の記事を参照してください

Baby Ai Meme、Arcanaの550万ドルのAI映画パイプライン、IRの秘密の支援者が明らかにした話Baby Ai Meme、Arcanaの550万ドルのAI映画パイプライン、IRの秘密の支援者が明らかにした話Apr 25, 2025 am 11:07 AM

今週はAIとXR:AIを搭載した創造性の波が、音楽の世代から映画制作まで、メディアとエンターテイメントを席巻しています。 見出しに飛び込みましょう。 AIに生成されたコンテンツの影響力の高まり:テクノロジーコンサルタントのShelly Palme

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、