ベクトル化された高解像度 (HD) 地図の構築では、地図要素 (道路境界線、車線分離帯、横断歩道など) のカテゴリとポイント座標を予測する必要があります。最先端の方法は、主に、正確な点座標を回帰するための点レベルの表現学習に基づいています。ただし、このパイプラインには、要素レベルの情報を取得し、間違った要素の形状や要素間のもつれなどの要素レベルの障害を処理する際に制限があります。上記の問題を解決するために、この論文では、ポイントレベルおよび要素レベルの情報を完全に学習して対話するための、HIMap という名前のシンプルで効果的な HybrId フレームワークを提案します。
具体的には、すべての地図要素を表すために HIQuery と呼ばれるハイブリッド表現が導入され、点の位置や要素の形状などの要素のハイブリッド情報を対話的に抽出して HIQuery にエンコードする点要素インタラクターが提案されています。さらに、点レベルの情報と要素レベルの情報の間の一貫性を強化するために、点要素の一貫性制約も提案されています。最後に、統合された HIQuery の出力ポイント要素は、マップ要素のクラス、ポイント座標、およびマスクに直接変換できます。 nuScenes と Argoverse2 データセットに対して広範な実験が行われ、以前の方法よりも一貫して優れた結果が示されています。この方法は nuScenes データセットで 77.8mAP を達成しており、これは以前の SOTA よりも少なくとも 8.3mAP 大幅に優れていることは注目に値します。
論文名: HIMap: エンドツーエンドのベクトル化 HD マップ構築のための HybrId 表現学習
論文リンク: https://arxiv.org/pdf/2403.08639.pdf
HIMap では、まず、マップ内のすべてのマップ要素を表す HIQuery と呼ばれるハイブリッド表現が導入されます。これは、BEV 機能と対話することで繰り返し更新および調整できる学習可能なパラメーターのセットです。次に、マップ要素のハイブリッド情報 (ポイントの位置、要素の形状など) を HIQuery にエンコードし、ポイント要素の相互作用を実行するように、マルチレイヤー ハイブリッド デコーダーが設計されています (図 2 を参照)。ハイブリッド デコーダの各層には、ポイント要素インタラクター、セルフ アテンション、FFN が含まれます。点要素インタラクターの内部には、点レベルと要素レベルの情報の交換を実現し、単一レベル情報の学習バイアスを回避するための相互作用メカニズムが実装されています。最後に、統合された HIQuery の出力ポイント要素は、要素のポイント座標、クラス、マスクに直接変換できます。さらに、点レベルの情報と要素レベルの情報の間の一貫性を強化するために、点要素の一貫性制約も提案されています。
HIMap フレームワークの概要
HIMap の全体的なプロセスを図 3(a) に示します。 HIMap は、マルチビュー カメラからの RGB 画像、LIDAR からの点群、マルチモーダル データなど、さまざまな航空センサー データと互換性があります。ここでは、HIMap がどのように機能するかを説明するために、マルチビュー RGB 画像を例に挙げます。
BEV 特徴抽出ツールは、マルチビュー RGB 画像から BEV 特徴を抽出するツールです。そのコアには、各視点からマルチスケール 2D フィーチャのバックボーン部分を抽出すること、マルチスケール フィーチャを融合および洗練することによって単一スケール フィーチャの FPN 部分を取得すること、および 2D から BEV フィーチャへの変換モジュールを利用して 2D フィーチャを BEV にマッピングすることが含まれます。特徴。 。このプロセスは、画像情報を処理と分析により適した BEV 特徴に変換するのに役立ち、特徴の使いやすさと精度が向上します。この手法により、多視点画像の情報をより深く理解して活用することができ、その後のデータ処理や意思決定をより強力にサポートします。
HIQuery: 地図要素のポイントレベルおよび要素レベルの情報を完全に学習するために、地図内のすべての要素を表す HIQuery が導入されました。
ハイブリッド デコーダ: ハイブリッド デコーダは、HIQuery Qh と BEV 機能 X を反復的に対話させることによって、統合された HIQuery を生成します。
ポイント要素インタラクターの目標は、マップ要素のポイントレベルおよび要素レベルの情報を対話的に抽出し、それを HIQuery にエンコードすることです。 2 つのレベルの情報の相互作用の動機は、それらの相補性から生じます。ポイントレベルの情報にはローカルな位置の知識が含まれ、要素レベルの情報にはグローバルな形状と意味論的な知識が含まれます。したがって、この相互作用により、マップ要素のローカルおよびグローバル情報の相互改良が可能になります。
それぞれ局所的な情報と全体的な情報に焦点を当てた点レベルの表現と要素レベルの表現の間の元々の違いを考慮すると、2 つのレベルの表現の学習は相互に干渉する可能性もあります。これにより、情報のやり取りが難しくなり、情報のやり取りの有効性が低下します。そこで、点要素整合性制約を導入することで、各点レベルと要素レベル情報との整合性を高め、要素の識別性も高めることができます!
実験結果の比較
この論文では、NuScenes データセットと Argoverse2 データセットで実験を行いました。
nuScenes val-set での SOTA モデルの比較:
Argoverse2 val-set での SOTA モデルの比較:
nuScenes 検証セットのマルチモーダル データでの SOTA モデルとの比較:
以上がすべての方法よりも優れています! HIMap: エンドツーエンドのベクトル化された HD マップ構築の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

thinkphp是国产框架。ThinkPHP是一个快速、兼容而且简单的轻量级国产PHP开发框架,是为了简化企业级应用开发和敏捷WEB应用开发而诞生的。ThinkPHP从诞生以来一直秉承简洁实用的设计原则,在保持出色的性能和至简的代码的同时,也注重易用性。

什么是 celery这次我们来介绍一下 Python 的一个第三方模块 celery,那么 celery 是什么呢? celery 是一个灵活且可靠的,处理大量消息的分布式系统,可以在多个节点之间处理某个任务; celery 是一个专注于实时处理的任务队列,支持任务调度; celery 是开源的,有很多的使用者; celery 完全基于 Python 语言编写;所以 celery 本质上就是一个任务调度框架,类似于 Apache 的 airflow,当然 airflow 也是基于 Python

AI就像一个黑匣子,能自己做出决定,但是人们并不清楚其中缘由。建立一个AI模型,输入数据,然后再输出结果,但有一个问题就是我们不能解释AI为何会得出这样的结论。需要了解AI如何得出某个结论背后的原因,而不是仅仅接受一个在没有上下文或解释的情况下输出的结果。可解释性旨在帮助人们理解:如何学习的?学到了什么?针对一个特定输入为什么会做出如此决策?决策是否可靠?在本文中,我将介绍6个用于可解释性的Python框架。SHAPSHapleyAdditiveexplanation(SHapleyAdditi

AOP(面向切面编程)是一种编程思想,用于解耦业务逻辑和横切关注点(如日志、权限等)。在PHP中,使用AOP框架可以简化编码,提高代码可维护性和可扩展性。本文将介绍在PHP中使用AOP框架的基本原理和实现方法。一、AOP的概念和原理面向切面编程,指的是将程序的业务逻辑和横切关注点分离开来,通过AOP框架来实现统一管理。横切关注点指的是在程序中需要重复出现并且

已安装Microsoft.NET版本4.5.2、4.6或4.6.1的MicrosoftWindows用户如果希望Microsoft将来通过产品更新支持该框架,则必须安装较新版本的Microsoft框架。据微软称,这三个框架都将在2022年4月26日停止支持。支持日期结束后,产品将不会收到“安全修复或技术支持”。大多数家庭设备通过Windows更新保持最新。这些设备已经安装了较新版本的框架,例如.NETFramework4.8。未自动更新的设备可能

如果你在Windows11上安装了2022年5月累积更新,你可能已经注意到你一直使用的许多应用程序都不像以前那样工作了。强制性安全更新KB5013943正在使某些使用.NET框架的应用程序崩溃。在某些情况下,用户会收到错误代码:0xc0000135。可选更新中报告了类似的问题,但并不普遍。随着2022年5月的更新,该错误似乎已进入生产渠道,这次有更多用户受到影响。崩溃在使用.NETFramework的应用程序中很常见,Discord或MicrosoftTeams等

近几年人工智能领域的突破大多由自监督学习推动,比如BERT中提出的MLM(MaskedLanguageModel),通过将文本中的部分单词遮盖后重新预测,使得海量无标记文本数据也能用来训练模型,自此开启了大规模预训练模型的新时代。但自监督学习算法也有明显的局限性,通常只适用于单一模态(如图像、文本、语音等)的数据,并且需要大量的算力从海量数据中进行学习。相比之下,人类的学习效率要显著高于当前的AI模型,并且可以从不同类型的数据中进行学习。2022年1月,MetaAI发布了自监督学习框架data2


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

Dreamweaver Mac版
ビジュアル Web 開発ツール

ホットトピック



