強化学習 (RL) は、エージェントが試行錯誤を通じて学習する機械学習手法です。強化学習アルゴリズムは、ゲーム、ロボット工学、金融などの多くの分野で使用されています。
RL の目標は、期待される長期的な利益を最大化する戦略を発見することです。強化学習アルゴリズムは、通常、モデルベースとモデルフリーの 2 つのカテゴリに分類されます。モデルベースのアルゴリズムは、環境モデルを使用して最適な行動経路を計画します。このアプローチは、環境の正確なモデリングと、そのモデルを使用したさまざまなアクションの結果の予測に依存しています。対照的に、モデルフリー アルゴリズムは環境との相互作用から直接学習するため、環境の明示的なモデリングを必要としません。この方法は、環境モデルの取得が困難または不正確な状況に適しています。実際には、モデルフリーの強化学習アルゴリズムは環境の明示的なモデリングを必要としませんが、継続的な経験を通じて学習します。 Q ラーニングや SARSA などの一般的な RL アルゴリズムは、この考えに基づいて設計されています。
なぜ強化学習が重要なのでしょうか?
6. Deep RL でのスピンアップ: 深層強化学習スキルを開発するための OpenAI の教育リソース。
プロジェクト ソース コード URL: https://spinningup.openai.com/en/latest/
7. フロー: インテリジェント交通システムを設計およびテストするためのツールキット。
プロジェクトのソース コード URL: https://github.com/onflow
8. MountainCar: 山で仮想車を運転する自律エージェントをトレーニングするためのオープンソースの強化学習環境。
プロジェクト ソース コード URL: https://github.com/mshik3/MountainCar-v0
9. OpenAI ベースライン: 強化学習アルゴリズムの高品質実装セット。
プロジェクトのソースコード URL: https://github.com/openai/baselines
10. CARLA: 自動運転システムの開発とトレーニングをサポートする自動運転研究用のオープンソース シミュレーターそして検証。
プロジェクトのソースコード URL: https://github.com/carla-simulator/carla
11. Google Research Football: 強化学習研究のための 3D サッカー シミュレーション環境。
プロジェクト ソース コード URL: https://github.com/google-research/football
12. ChainerRL: Chainer フレームワークを使用して深層強化学習アルゴリズムを実装するライブラリ。
プロジェクト ソース コード URL: https://github.com/chainer/chainerrl
13. Ray RLlib: 分散強化学習のトレーニングと推論のためのオープンソース ライブラリ。
プロジェクト ソース コード URL: https://github.com/ray-project/ray
14. OpenAI Retro: 強化学習機能を備えたクラシック ゲーム環境を作成するためのオープン ソース ライブラリ。
プロジェクト ソース コード URL: https://github.com/openai/retro
15. デモンストレーションからの深層強化学習: 人間のデモンストレーションまたは報酬ツール キットの存在下でエージェントをトレーニングするために使用されます。 。
プロジェクト ソース コード URL: https://ieeexplore.ieee.org/document/9705112
16. TensorFlow Agents: TensorFlow を使用して強化学習エージェントをトレーニングするためのライブラリ。
プロジェクト ソース コード URL: https://www.tensorflow.org/agents
17. PyGame 学習環境: 古典的なアーケード ゲーム フレームワークで AI エージェントを開発および評価するためのツールキット。
プロジェクトのソース コード URL: https://github.com/ntasfi/PyGame-Learning-Environment
18. マルメ: 開発者が人工知能の研究に Minecraft を使用できるようにするオープン ソース プロジェクトプラットホーム。
プロジェクト ソース コード URL: https://github.com/microsoft/malmo
19. AirSim: シミュレーション環境で自動運転車を開発、評価、テストするためのツールキット。
プロジェクトのソース コード URL: https://microsoft.github.io/AirSim/
RL 開発を自分で始めるにはどうすればよいですか?
独自の RL アプリケーションの開発に興味がある場合は、ソフトウェア開発キット (SDK) をダウンロードすることから始めるのが最適です。 SDK は、RL アプリケーションの開発に必要なすべてのツールとライブラリを提供します。
SDK を入手したら、さまざまなプログラミング言語とフレームワークから選択できます。たとえば、Unity エンジンの開発に興味がある場合は、Unity SDK を使用できます。
Unreal Engine の開発に興味がある場合は、Unreal Engine 4 SDK を使用できます。プラットフォームと言語を選択したら、RL アプリケーションの作成を開始できます。さらに、RL 開発を始めるのに役立つチュートリアルやコースをオンラインで見つけることができます。
最後に、RL アプリケーションの開発には練習と忍耐が必要であることを覚えておくことが重要です。しかし、十分な献身と努力があれば、この分野の専門家になることができます。
さらに、強化学習について詳しく学ぶためのリソースを探している場合は、オンラインで多数のチュートリアルやコースを見つけることができます。
さらに、強化学習のアルゴリズムと技術の最新の進歩について論じた書籍や研究論文が数多くあります。さらに、カンファレンスやワークショップに参加することは、強化学習に触れるのに最適な方法です
結論
強化学習は、さまざまな業界で応用されているエキサイティングで急速に成長している分野です。これにより、環境から学習し、データに基づいて意思決定を行うことができるインテリジェントなエージェントを開発できるようになります。
RL 開発を開始するには、SDK をダウンロードし、プロジェクトに最適な言語とフレームワークを選択する必要があります。
さらに、時間をかけて RL の基本を理解し、エージェントの開発を練習する必要があります。最後に、RL についてさらに学ぶのに役立つオンライン リソースが多数あります。十分な献身と努力があれば、その分野の専門家になれるでしょう。
以上が機械学習: Github の強化学習 (RL) プロジェクトのトップ 19の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

オンデバイスAIの力を活用:個人的なチャットボットCLIの構築 最近では、個人的なAIアシスタントの概念はサイエンスフィクションのように見えました。 ハイテク愛好家のアレックスを想像して、賢くて地元のAI仲間を夢見ています。

AI4MHの最初の発売は2025年4月15日に開催され、有名な精神科医および神経科学者であるLuminary Dr. Tom Insel博士がキックオフスピーカーを務めました。 Insel博士は、メンタルヘルス研究とテクノでの彼の傑出した仕事で有名です

「私たちは、WNBAが、すべての人、プレイヤー、ファン、企業パートナーが安全であり、大切になり、力を与えられたスペースであることを保証したいと考えています」とエンゲルバートは述べ、女性のスポーツの最も有害な課題の1つになったものに取り組んでいます。 アノ

導入 Pythonは、特にデータサイエンスと生成AIにおいて、プログラミング言語として優れています。 大規模なデータセットを処理する場合、効率的なデータ操作(ストレージ、管理、アクセス)が重要です。 以前に数字とstをカバーしてきました

潜る前に、重要な注意事項:AIパフォーマンスは非決定論的であり、非常にユースケース固有です。簡単に言えば、走行距離は異なる場合があります。この(または他の)記事を最終的な単語として撮影しないでください。これらのモデルを独自のシナリオでテストしないでください

傑出したAI/MLポートフォリオの構築:初心者と専門家向けガイド 説得力のあるポートフォリオを作成することは、人工知能(AI)と機械学習(ML)で役割を確保するために重要です。 このガイドは、ポートフォリオを構築するためのアドバイスを提供します

結果?燃え尽き症候群、非効率性、および検出とアクションの間の隙間が拡大します。これは、サイバーセキュリティで働く人にとってはショックとしてはありません。 しかし、エージェントAIの約束は潜在的なターニングポイントとして浮上しています。この新しいクラス

即時の影響と長期パートナーシップ? 2週間前、Openaiは強力な短期オファーで前進し、2025年5月末までに米国およびカナダの大学生にChatGpt Plusに無料でアクセスできます。このツールにはGPT ‑ 4o、Aが含まれます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

WebStorm Mac版
便利なJavaScript開発ツール

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター
