bitsCN.com
编辑器加载中... 出处:http://www.realzyy.com/?p=923 Linux有很多很好的内存、IO调度机制,但是并不会适用于所有场景。对于DBA来说Linux比较让人头疼的一个地方是,它不会因为MySQL很重要就避免将分配给MySQL的地址空间映射到swap上。对于频繁进行读写操作的系统而言,数据看似在内存而实际上在磁盘是非常糟糕的,响应时间的增长很可能直接拖垮整个系统。这篇blog主要讲讲我们作为DBA,怎样尽量避免MySQL惨遭swap的毒手。 首先我们要了解点基础的东西,比如说为什么会产生swap。假设我们的物理内存是16G,swap是4G。如果MySQL本身已经占用了12G物理内存,而同时其他程序或者系统模块又需要6G内存,这时候操作系统就可能把MySQL所拥有的一部分地址空间映射到swap上去。 cp一个大文件,或用mysqldump导出一个很大的数据库的时候,文件系统往往会向Linux申请大量的内存作为cache,一不小心就会导致L使用swap。这个情景比较常见,以下是最简单的三个调整方法: 1、/proc/sys/vm/swappiness的内容改成0(临时),/etc/sysctl.conf上添加vm.swappiness=0(永久) 这个参数决定了Linux是倾向于使用swap,还是倾向于释放文件系统cache。在内存紧张的情况下,数值越低越倾向于释放文件系统cache。 当然,这个参数只能减少使用swap的概率,并不能避免Linux使用swap。 2、修改MySQL的配置参数innodb_flush_method,开启O_DIRECT模式。 这种情况下,InnoDB的buffer pool会直接绕过文件系统cache来访问磁盘,但是redo log依旧会使用文件系统cache。值得注意的是,Redo log是覆写模式的,即使使用了文件系统的cache,也不会占用太多。 3、添加MySQL的配置参数memlock 这个参数会强迫mysqld进程的地址空间一直被锁定在物理内存上,对于os来说是非常霸道的一个要求。必须要用root帐号来启动MySQL才能生效。 还有一个比较复杂的方法,指定MySQL使用大页内存(Large Page)。Linux上的大页内存是不会被换出物理内存的,和memlock有异曲同工之妙。具体的配置方法可以参考:http://harrison-fisk.blogspot.co ... pages-on-linux.html
出处:http://www.realzyy.com/?p=943
之前介绍了MySQL如何避免使用swap的四个方法。这里需要补充一下原理和实现机制,对于Linux api不感兴趣的同学可以直接跳过。
一、操作系统设置swap的目的
程序运行的一个必要条件就是足够的内存,而内存往往是系统里面比较紧张的一种资源。为了满足更多程序的要求,操作系统虚拟了一部分内存地址,并将之映射到swap上。对于程序来说,它只知道操作系统给自己分配了内存地址,但并不清楚这些内存地址到底映射到物理内存还是swap。
物理内存和swap在功能上是一样的,只是因为物理存储元件的不同(内存和磁盘),性能上有很大的差别。操作系统会根据程序使用内存的特点进行换入和换出,尽可能地把物理内存留给最需要它的程序。但是这种调度是按照预先设定的某种规则的,并不能完全符合程序的需要。一些特殊的程序(比如MySQL)希望自己的数据永远寄存在物理内存里,以便提供更高的性能。于是操作系统就设置了几个api,以便为调用者提供“特殊服务”。
二、Linux提供的几个api
1、mlockall()和munlockall()
这一对函数,可以让调用者的地址空间常驻物理内存,也可以在需要的时候将此特权取消。mlockall()的flag位可以是MCL_CURRENT和MCL_FUTURE的任意组合,分别代表了“保持已分配的地址空间常驻物理内存”和“保持未来分配的地址空间常驻物理内存”。对于Linux来说,这对函数是非常霸道的,只有root用户才有权限调用。
2、shmget()和shmat()
这一对函数,可以向操作系统申请使用大页内存(Large Page)。大页内存的特点是预分配和永驻物理内存,因为使用了共享内存段的方式,page table有可能会比传统的小页分配方式更小。对于多进程共享内存的程序(比如ORACLE),大页内存能够节省很多page table开销;而对于MySQL来说,性能和资源开销都没有显著变化,好处就在于减少了内存地址被映射到swap上的可能。至于为什么是减少,而不是完全避免,之后再讲解。
3、O_DIRECT和posix_memalign()
以上两个方法都不会减少内存的使用量,调用者的本意是获取更高的系统特权,而不是节约系统资源。O_DIRECT是一种更加理想化的方式,通过避免double buffer,节省了文件系统cache的开销,最终减少swap的使用率。O_DIRECT是Linux IO调度相关的标志,在open函数里面调用。通过O_DIRECT标志打开的文件,读写都不会用到文件系统的cache。传统的数据库(ORACLE、MySQL)基本都有O_DIRECT相关的开关,在提高性能的同时,也减少了内存的使用。至于posix_memalign(),是用来申请对齐的内存地址的。只有用posix_memalign()申请的内存地址,才能用来读写O_DIRECT模式下的文件描述符。
4、madvise()和fadvise()
这对函数也是比较温和的,可以将调用者对数据访问模式的预期传递给Linux,以期得到更好的性能。
我们比较感兴趣的是MADV_DONTNEED和FADV_NOREUSE这两个flag。前者会建议Linux释放指定的内存区域,而后者会建议文件系统释放指定文件所占用的cache。
三、MySQL内存使用相关的一些代码
1、memlock
在MySQL的源码目录里面查询memlock,可以知道这个参数的作用是使MySQL调用mlockall()。在源码里面匹配可以得知NDB、MyISAM和mysqld都调用了mlockall()。NDB是可以独立于MySQL而存在的存储引擎,此处按下不表。mysqld调用mlockall()的方式有点出乎意料,在init_server_components()函数里传给mlockall()的flag是MCL_CURRENT,也就是说之后申请的内存一概不用锁住。再看看MyISAM的调用顺序是:mlockall() 2、large-pages
根据Linux的内核文档,大页内存有两种方法可以用到:一种是创建hugetlb类型的文件,并将它mmap到程序的内存地址里面,然后进行正常的读写操作。另外一种是之前说到的shmget()+shmat(),也正是MySQL采用的方式。在MySQL的源码目录里面匹配shmget,可以发现BDB、NDB、InnoDB、MyISAM都调用了这个函数。接着看一下比较常用的InnoDB和MyISAM引擎。
在InnoDB里面可以找到os_mem_alloc_large()调用了shmget(),而调用os_mem_alloc_large()的函数只有buf_pool_init()——InnoDB Buffer Pool的初始化函数。根据观察得到的结论是,InnoDB会根据配置参数在Buffer Pool里面使用大页内存,Redo log貌似就没有这个待遇了。
对于MyISAM,在storage层级的代码里面找不到对shmget()的直接调用。这是因为MyISAM是MySQL的原生存储引擎,很多函数存放在上一层的mysys目录里面。通过搜索shmget(),我们可以找到MyISAM的调用顺序是这样的:shmget() 3、innodb_flush_method
O_DIRECT是BDB、NDB、InnoDB特有的参数,在这里只讨论InnoDB这个比较常见的引擎。在InnoDB的源码目录里面匹配O_DIRECT,很容易找到一个叫做os_file_set_nocache()的函数,而这个函数作用是将文件的打开方式改为O_DIRECT模式。再跟踪一下,会发现只有os_file_create()函数调用了os_file_set_nocache()。虽然函数名里面还有create,实际上os_file_create()会根据传入参数的不同,选择打开或者新建一个文件。同时os_file_create()还会根据MySQL的配置,来调用os_file_set_nocache()关闭文件系统的相应cache。在os_file_create()函数里面有如下一段代码:
/* We disable OS caching (O_DIRECT) only on data files */
if (type != OS_LOG_FILE &&
srv_unix_file_flush_method == SRV_UNIX_O_DIRECT)
{
os_file_set_nocache(file, name, mode_str);
}
这段代码的意思是,只有InnoDB的数据文件有资格使用O_DIRECT模式,Redo log是不能使用的。
以上的分析基于5.0.85版本的原版MySQL,InnoDB是Innobase。
版本不同情况下可能会有一些出入,欢迎参与讨论。
参考文献:
Virtual memory@wiki
All about Linux swap space
HugeTLB – Large Page Support in the Linux Kernel
Page table@wiki
出处:http://www.realzyy.com/?p=1245
必须得承认,即使看完了MySQL如何避免使用swap和MySQL如何避免使用swap(二),swap仍然可能顽固地在主机上复现。不过幸运的是,最近一年来众多swap问题的受害者们通过不懈的努力找到了终极原因——NUMA。下面站在巨人的肩膀上,为大家简单讲解一下NUMA的原理和优化方法。
一、NUMA和SMP
NUMA和SMP是两种CPU相关的硬件架构。在SMP架构里面,所有的CPU争用一个总线来访问所有内存,优点是资源共享,而缺点是总线争用激烈。随着PC服务器上的CPU数量变多(不仅仅是CPU核数),总线争用的弊端慢慢越来越明显,于是Intel在Nehalem CPU上推出了NUMA架构,而AMD也推出了基于相同架构的Opteron CPU。
NUMA最大的特点是引入了node和distance的概念。对于CPU和内存这两种最宝贵的硬件资源,NUMA用近乎严格的方式划分了所属的资源组(node),而每个资源组内的CPU和内存是几乎相等。资源组的数量取决于物理CPU的个数(现有的PC server大多数有两个物理CPU,每个CPU有4个核);distance这个概念是用来定义各个node之间调用资源的开销,为资源调度优化算法提供数据支持。
二、NUMA相关的策略
1、每个进程(或线程)都会从父进程继承NUMA策略,并分配有一个优先node。如果NUMA策略允许的话,进程可以调用其他node上的资源。
2、NUMA的CPU分配策略有cpunodebind、physcpubind。cpunodebind规定进程运行在某几个node之上,而physcpubind可以更加精细地规定运行在哪些核上。
3、NUMA的内存分配策略有localalloc、preferred、membind、interleave。localalloc规定进程从当前node上请求分配内存;而preferred比较宽松地指定了一个推荐的node来获取内存,如果被推荐的node上没有足够内存,进程可以尝试别的node。membind可以指定若干个node,进程只能从这些指定的node上请求分配内存。interleave规定进程从指定的若干个node上以RR算法交织地请求分配内存。
三、NUMA和swap的关系
可能大家已经发现了,NUMA的内存分配策略对于进程(或线程)之间来说,并不是公平的。在现有的Redhat Linux中,localalloc是默认的NUMA内存分配策略,这个配置选项导致资源独占程序很容易将某个node的内存用尽。而当某个node的内存耗尽时,Linux又刚好将这个node分配给了某个需要消耗大量内存的进程(或线程),swap就妥妥地产生了。尽管此时还有很多page cache可以释放,甚至还有很多的free内存。
四、解决swap问题
虽然NUMA的原理相对复杂,实际上解决swap却很简单:只要在启动MySQL之前使用numactl –interleave来修改NUMA策略即可。
值得注意的是,numactl这个命令不仅仅可以调整NUMA策略,也可以用来查看当前各个node的资源是用情况,是一个很值得研究的命令。
引用资料:
The MySQL “swap insanity” problem and the effects of the NUMA architecture
NUMA Status: Item Definition
Linux Administrator’s Manual(#man numactl)

MySQLdiffersfromotherSQLdialectsinsyntaxforLIMIT,auto-increment,stringcomparison,subqueries,andperformanceanalysis.1)MySQLusesLIMIT,whileSQLServerusesTOPandOracleusesROWNUM.2)MySQL'sAUTO_INCREMENTcontrastswithPostgreSQL'sSERIALandOracle'ssequenceandt

MySQLパーティション化により、パフォーマンスが向上し、メンテナンスが簡素化されます。 1)大きなテーブルを特定の基準(日付範囲など)、2)物理的に独立したファイルに物理的に分割する、3)MySQLはクエリするときに関連するパーティションに焦点を合わせることができます。

mysqlで許可を許可および取り消す方法は? 1。grantallprivilegesondatabase_name.to'username'@'host 'などの許可を付与するために付与ステートメントを使用してください。 2。Revokeallprivilegesondatabase_name.from'username'@'host 'など、Revoke Statementを使用して、許可のタイムリーな通信を確保します。

INNODBは、トランザクションサポートと高い並行性を必要とするアプリケーションに適していますが、Myisamはより多くの読み取りとより少ない書き込みを必要とするアプリケーションに適しています。 1.INNODBは、eコマースおよび銀行システムに適したトランザクションおよび銀行レベルのロックをサポートしています。 2. Myisamは、ブログやコンテンツ管理システムに適した、迅速な読み取りとインデックス作成を提供します。

MySQLには4つのメイン結合タイプがあります:innerjoin、leftjoin、rightjoin、fullouterjoin。 1.InnerJoinは、結合条件を満たす2つのテーブルのすべての行を返します。 2.右のテーブルに一致する行がない場合でも、Leftjoinは左のテーブルのすべての行を返します。 3。右joinはleftjoinに反しており、右のテーブルのすべての行を返します。 4.fullouterjoinは、結合条件を満たしている、または満たさない2つのテーブルのすべての行を返します。

mysqloffersvariousstorageEngines、それぞれのfordifferentusecases:1)Innodbisidealforapplicationsingingidcomplianceanceandhighconcurrency、support transactions andforeignkeys.2)myisamisbestforread-havyworkloads、transactionsupptort.3)

MySQLの一般的なセキュリティの脆弱性には、SQLインジェクション、弱いパスワード、不適切な許可構成、および非合事ソフトウェアが含まれます。 1。SQL注射は、前処理ステートメントを使用することで防ぐことができます。 2。強力なパスワード戦略を強制的に使用することにより、弱いパスワードを回避できます。 3.不適切な許可構成は、ユーザー許可の定期的なレビューと調整を通じて解決できます。 4.未使用のソフトウェアは、MySQLバージョンを定期的にチェックして更新することでパッチを適用できます。

MySQLの遅いクエリを識別することは、遅いクエリログを有効にし、しきい値を設定することで実現できます。 1.スロークエリログを有効にし、しきい値を設定します。 2.スロークエリログファイルを表示および分析し、詳細な分析のためにMySQLDumpSlowやPT-Query-Digestなどのツールを使用します。 3.インデックスの最適化、クエリの書き換え、およびselect*の使用を回避することで、遅いクエリの最適化を実現できます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 中国語版
中国語版、とても使いやすい

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

ホットトピック









