GenAI は、ユーザーが独自の方法でデータをクエリしてニーズを満たす答えを得ることができるインターフェイスとして、大きな可能性を秘めています。たとえば、GenAI ツールはクエリ アシスタントとして、顧客がシンプルな質問と回答の形式を通じて広範な製品ナレッジ ベースをより効率的にナビゲートできるように支援します。このようにして、ユーザーは必要な情報をより迅速に見つけることができ、ユーザー エクスペリエンスが向上し、時間を節約できます。 GenAI のインテリジェントな検索機能により、ユーザーはより直観的にデータを操作できるため、問題の解決や必要な情報の取得が容易になります。この便利なクエリ方法はユーザーの満足度を向上させるだけでなく、企業により効率的な顧客サービス方法を提供し、ビジネスの発展を促進します。
ただし、GenAI を使用してデータに関する質問に答える前に、まず尋ねられている質問を評価することが重要です。
これは、Miso.ai の CEO 兼共同創設者である Lucky Gunasekara が、現在 GenAI ツールを開発しているチームに向けたアドバイスです。
Mito.ai の製品である Smart Answers がその洞察をどのように実証するかに興味があったため、私はユーザーの質問を理解し、それに答えるための Mito.ai のアプローチについてさらに詳しく議論するよう Gunasekara に依頼しました。
大規模言語モデルは「実際には、私たちが考えていたよりもはるかに単純です。」とグナセカラ氏は言いました。たとえば、強い意見について質問されると、大規模言語モデルはその意見の裏付けを探す可能性が高くなります。たとえ既存のデータがその考えが間違っていることを示していたとしても、データを選択してください。では、「なぜプロジェクトを行ったのか」と問われたら、
Gunasekara 氏は、RAG (検索拡張生成) アプリケーションにおいて、問題の評価は見落とされがちな重要なステップであると指摘しました。 RAG アプリケーションは、大規模な言語モデルを特定のデータ セットに誘導し、そのデータ セットに基づいて質問に答えるように要求します。
このタイプのアプリケーションは通常、次の (少し簡略化された) セットアップ パターンに従います。
- すべてのデータが大きすぎて単一の大規模言語モデルに収まらないため、既存のデータを複数のチャンクに分割します。クエリ。
- ブロックごとにいわゆるエンベディングを生成し、そのブロックのセマンティクスを数値の文字列として表し、それらを保存し、データが変更されたときに必要に応じて更新します。
次に、すべての質問:
- 埋め込みを生成します。
- 埋め込みベースの計算を使用して、質問の意味に最も似ているテキストの塊を見つけます。
- ユーザーの質問を大規模な言語モデルに入力し、最も関連性の高い部分のみに基づいて回答するように指示します。
Gunasekara チームは、関連情報を検索する前に問題を確認するステップを追加するという、異なるアプローチを採用しました。最高技術責任者であり、Miso の共同創設者である Andy Hsieh 氏は次のように説明しています。「私たちのアプローチは、直接質問するのではなく、まず前提が正しいかどうかを検証することです。」
質問ですが、結果を改善するために基本的な RAG パイプラインを強化する方法は他にもあります。 Gunasekara 氏は、特に実験段階から運用に適したソリューションに移行する場合、基本を超えて取り組むことを推奨しています。
Gunasekara 氏は次のように述べています。「『ベクトル データベースを構築し、RAG セットアップを実行すれば、すぐにすべてが機能する』ということが非常に強調されています。これは概念実証を行うための優れた方法ですが、意図しない結果をもたらさないエンタープライズ グレードのサービスを実行する必要があります。それは常にコンテキスト、コンテキスト、コンテキストです。」
これは、テキストのセマンティクスの使用に加えて、最新性や人気度などの他のシグナルを使用することを意味する場合があります。 Gunasekara 氏は、Miso が料理 Web サイトで取り組んでいる別のプロジェクトを挙げ、「パーティー用に焼くのに最適なケーキは何ですか?」という質問を分解するもので、本当に必要なものを区別する必要がある、と彼は言います。ケーキの「作り置き」は、すぐに提供する必要がないことを意味し、「パーティー用」は、数人以上に提供する必要があることを意味します。また、大規模な言語モデルがどのレシピが「最適」であるかをどのように決定するかという問題があります。これは、トラフィックが最も多いレシピ、読者ランキングの上位、編集者の選択を受賞したレシピなど、他のサイトのデータを使用することを意味する場合がありますが、これらはすべて、関連するテキスト ブロックの検索と集計とは別のものです。
「これらのことをうまく行うための多くのコツは、これらの文脈のヒントにあります」と Gunasekara 氏は言いました。
大規模な言語モデルの品質ももう 1 つの重要な要素ですが、Miso は最高評価で最も高価な商用の大規模言語モデルを使用する必要性を認識していません。代わりに、Miso は Llama 2 ベースのモデルを微調整しています。一部のクライアントプロジェクト、これは部分的にはコスト削減のためですが、一部の顧客は自分のデータが第三者に漏洩されることを望まないためでもあり、ミソはグナセカラ氏が言うところの「大きな力となるオープンソースの大きな言語モデル」のためにこれを行っています。今すぐ。" 。
「オープンソースは本当に追いつきつつあります。オープンソース モデルは GPT-4 を超える可能性が非常に高いです。」とシェイ氏は付け加えました。
以上がGenAI がより適切な回答を提供できるようにするためのヒントの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ジョン・ロールズの独創的な1971年の著書「正義の理論」で、彼は私たちが今日のAIデザインの核となり、意思決定を使用するべきであるという思考実験を提案しました:無知のベール。この哲学は、公平性を理解するための簡単なツールを提供し、リーダーがこの理解を使用してAIを公平に設計および実装するための青写真を提供します。 あなたが新しい社会のルールを作っていると想像してください。しかし、前提があります。この社会でどのような役割を果たすかは事前にわかりません。過半数または限界少数派に属している、金持ちまたは貧弱、健康、または障害者になることがあります。この「無知のベール」の下で活動することで、ルールメーカーが自分自身に利益をもたらす決定を下すことができません。それどころか、人々はより公衆を策定する意欲があります

ロボットプロセスオートメーション(RPA)を専門とする多くの企業は、繰り返しタスクを自動化するためのボットを提供しています。 一方、プロセスマイニング、オーケストレーション、インテリジェントドキュメント処理スペシャル

AIの未来は、単純な単語の予測と会話シミュレーションを超えて動いています。 AIエージェントは出現しており、独立したアクションとタスクの完了が可能です。 このシフトは、AnthropicのClaudeのようなツールですでに明らかです。 AIエージェント:研究a

急速な技術の進歩は、仕事の未来に関する将来の見通しの視点を必要とします。 AIが単なる生産性向上を超えて、私たちの社会構造の形成を開始するとどうなりますか? Topher McDougalの今後の本、Gaia Wakes:

多くの場合、Harmonized System(HS)などのシステムからの「HS 8471.30」などの複雑なコードを含む製品分類は、国際貿易と国内販売に不可欠です。 これらのコードは、すべてのINVに影響を与える正しい税申請を保証します

データセンターと気候技術投資におけるエネルギー消費の将来 この記事では、AIが推進するデータセンターのエネルギー消費の急増と気候変動への影響を調査し、この課題に対処するための革新的なソリューションと政策の推奨事項を分析します。 エネルギー需要の課題:大規模で超大規模なデータセンターは、数十万の普通の北米の家族の合計に匹敵する巨大な力を消費し、新たなAIの超大規模なセンターは、これよりも数十倍の力を消費します。 2024年の最初の8か月で、Microsoft、Meta、Google、Amazonは、AIデータセンターの建設と運用に約1,250億米ドルを投資しました(JP Morgan、2024)(表1)。 エネルギー需要の成長は、挑戦と機会の両方です。カナリアメディアによると、迫り来る電気

生成AIは、映画とテレビの制作に革命をもたらしています。 LumaのRay 2モデル、滑走路のGen-4、OpenaiのSora、GoogleのVEO、その他の新しいモデルは、前例のない速度で生成されたビデオの品質を向上させています。これらのモデルは、複雑な特殊効果と現実的なシーンを簡単に作成できます。短いビデオクリップやカメラ認知モーション効果も達成されています。これらのツールの操作と一貫性を改善する必要がありますが、進歩の速度は驚くべきものです。 生成ビデオは独立した媒体になりつつあります。アニメーション制作が得意なモデルもあれば、実写画像が得意なモデルもあります。 AdobeのFireflyとMoonvalleyのMAであることは注目に値します

ChatGptユーザーエクスペリエンスは低下します:それはモデルの劣化ですか、それともユーザーの期待ですか? 最近、多数のCHATGPT有料ユーザーがパフォーマンスの劣化について不満を述べています。 ユーザーは、モデルへの応答が遅く、答えが短い、助けの欠如、さらに多くの幻覚を報告しました。一部のユーザーは、ソーシャルメディアに不満を表明し、ChatGptは「お世辞になりすぎて」、重要なフィードバックを提供するのではなく、ユーザービューを検証する傾向があることを指摘しています。 これは、ユーザーエクスペリエンスに影響を与えるだけでなく、生産性の低下やコンピューティングリソースの無駄など、企業の顧客に実際の損失をもたらします。 パフォーマンスの劣化の証拠 多くのユーザーは、特にGPT-4などの古いモデル(今月末にサービスから廃止される)で、ChatGPTパフォーマンスの大幅な分解を報告しています。 これ


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

ホットトピック









