ホームページ > 記事 > テクノロジー周辺機器 > Rust の Linfa ライブラリと Polars ライブラリを使用した機械学習: 線形回帰
この記事では、Rust の Linfa ライブラリと Polars ライブラリを使用して、機械学習に線形回帰アルゴリズムを実装します。
Linfa クレートは、Rust を使用して機械学習アプリケーションを構築するための包括的なツールキットを提供することを目的としています。
Polars は、Apache Arrow メモリ モデルに基づく Rust DataFrame ライブラリです。 Apache Arrow は効率的な列データ構造を提供し、徐々に事実上の標準になりました。
以下の例では、糖尿病データセットを使用して線形回帰アルゴリズムをトレーニングします。
次のコマンドを使用して新しい Rust プロジェクトを作成します:
cargo new machine_learning_linfa
次の依存関係を Cargo.toml ファイルに追加します:
[dependencies]linfa = "0.7.0"linfa-linear = "0.7.0"ndarray = "0.15.6"polars = { version = "0.35.4", features = ["ndarray"]}
プロジェクトのルート ディレクトリに糖尿病_file.csv ファイルを作成し、データ セットをファイルに書き込みます。
#AGESEX BMI BPS1S2S3S4S5S6Y592 32.1101 157 93.2384 4.859887151481 21.687183 103.2 703 3.89186975722 30.593156 93.6414 4.672885141241 25.384198 131.4 405 4.890389206501 23101 192 125.4 524 4.290580135231 22.689139 64.8612 4.18976897362 2290160 99.6503 3.951282138662 26.2114 255 185 564.554.24859263602 32.183179 119.4 424 4.477394110.............データセットはここからダウンロードできます: https://www4.stat.ncsu.edu/~boos/var.select/diabetes.tab.txt src/main.rs ファイルに次のコードを記述します。
use linfa::prelude::*;use linfa::traits::Fit;use linfa_linear::LinearRegression;use ndarray::{ArrayBase, OwnedRepr};use polars::prelude::*; // Import polarsfn main() -> Result> {// 将制表符定义为分隔符let separator = b'\t';let df = polars::prelude::CsvReader::from_path("./diabetes_file.csv")?.infer_schema(None).with_separator(separator).has_header(true).finish()?;println!("{:?}", df);// 提取并转换目标列let age_series = df.column("AGE")?.cast(&DataType::Float64)?;let target = age_series.f64()?;println!("Creating features dataset");let mut features = df.drop("AGE")?;// 遍历列并将每个列强制转换为Float64for col_name in features.get_column_names_owned() {let casted_col = df.column(&col_name)?.cast(&DataType::Float64).expect("Failed to cast column");features.with_column(casted_col)?;}println!("{:?}", df);let features_ndarray: ArrayBase<ownedrepr>, _> =features.to_ndarray::<float64type>(IndexOrder::C)?;let target_ndarray = target.to_ndarray()?.to_owned();let (dataset_training, dataset_validation) =Dataset::new(features_ndarray, target_ndarray).split_with_ratio(0.80);// 训练模型let model = LinearRegression::default().fit(&dataset_training)?;// 预测let pred = model.predict(&dataset_validation);// 评价模型let r2 = pred.r2(&dataset_validation)?;println!("r2 from prediction: {}", r2);Ok(())}</float64type></ownedrepr>
shape: (442, 11)┌─────┬─────┬──────┬───────┬───┬──────┬────────┬─────┬─────┐│ AGE ┆ SEX ┆ BMI┆ BP┆ … ┆ S4 ┆ S5 ┆ S6┆ Y ││ --- ┆ --- ┆ ---┆ --- ┆ ┆ ---┆ ---┆ --- ┆ --- ││ i64 ┆ i64 ┆ f64┆ f64 ┆ ┆ f64┆ f64┆ i64 ┆ i64 │╞═════╪═════╪══════╪═══════╪═══╪══════╪════════╪═════╪═════╡│ 59┆ 2 ┆ 32.1 ┆ 101.0 ┆ … ┆ 4.0┆ 4.8598 ┆ 87┆ 151 ││ 48┆ 1 ┆ 21.6 ┆ 87.0┆ … ┆ 3.0┆ 3.8918 ┆ 69┆ 75││ 72┆ 2 ┆ 30.5 ┆ 93.0┆ … ┆ 4.0┆ 4.6728 ┆ 85┆ 141 ││ 24┆ 1 ┆ 25.3 ┆ 84.0┆ … ┆ 5.0┆ 4.8903 ┆ 89┆ 206 ││ … ┆ … ┆ …┆ … ┆ … ┆ …┆ …┆ … ┆ … ││ 47┆ 2 ┆ 24.9 ┆ 75.0┆ … ┆ 5.0┆ 4.4427 ┆ 102 ┆ 104 ││ 60┆ 2 ┆ 24.9 ┆ 99.67 ┆ … ┆ 3.77 ┆ 4.1271 ┆ 95┆ 132 ││ 36┆ 1 ┆ 30.0 ┆ 95.0┆ … ┆ 4.79 ┆ 5.1299 ┆ 85┆ 220 ││ 36┆ 1 ┆ 19.6 ┆ 71.0┆ … ┆ 3.0┆ 4.5951 ┆ 92┆ 57│└─────┴─────┴──────┴───────┴───┴──────┴────────┴─────┴─────┘Creating features datasetshape: (442, 11)┌─────┬─────┬──────┬───────┬───┬──────┬────────┬─────┬─────┐│ AGE ┆ SEX ┆ BMI┆ BP┆ … ┆ S4 ┆ S5 ┆ S6┆ Y ││ --- ┆ --- ┆ ---┆ --- ┆ ┆ ---┆ ---┆ --- ┆ --- ││ i64 ┆ i64 ┆ f64┆ f64 ┆ ┆ f64┆ f64┆ i64 ┆ i64 │╞═════╪═════╪══════╪═══════╪═══╪══════╪════════╪═════╪═════╡│ 59┆ 2 ┆ 32.1 ┆ 101.0 ┆ … ┆ 4.0┆ 4.8598 ┆ 87┆ 151 ││ 48┆ 1 ┆ 21.6 ┆ 87.0┆ … ┆ 3.0┆ 3.8918 ┆ 69┆ 75││ 72┆ 2 ┆ 30.5 ┆ 93.0┆ … ┆ 4.0┆ 4.6728 ┆ 85┆ 141 ││ 24┆ 1 ┆ 25.3 ┆ 84.0┆ … ┆ 5.0┆ 4.8903 ┆ 89┆ 206 ││ … ┆ … ┆ …┆ … ┆ … ┆ …┆ …┆ … ┆ … ││ 47┆ 2 ┆ 24.9 ┆ 75.0┆ … ┆ 5.0┆ 4.4427 ┆ 102 ┆ 104 ││ 60┆ 2 ┆ 24.9 ┆ 99.67 ┆ … ┆ 3.77 ┆ 4.1271 ┆ 95┆ 132 ││ 36┆ 1 ┆ 30.0 ┆ 95.0┆ … ┆ 4.79 ┆ 5.1299 ┆ 85┆ 220 ││ 36┆ 1 ┆ 19.6 ┆ 71.0┆ … ┆ 3.0┆ 4.5951 ┆ 92┆ 57│└─────┴─────┴──────┴───────┴───┴──────┴────────┴─────┴─────┘r2 from prediction: 0.15937814745521017迅速なイテレーションと迅速なプロトタイピングを優先するデータ サイエンティスト向けに、Rust のコンパイル時間は頭痛の種になる可能性があります。 Rust の強力な静的型システムは、型の安全性を確保し、実行時エラーを削減するのに適していますが、コーディング プロセスの複雑さをさらに高めます。
以上がRust の Linfa ライブラリと Polars ライブラリを使用した機械学習: 線形回帰の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。