検索
ホームページテクノロジー周辺機器AIYOLOは不滅です! YOLOv9 がリリースされました: パフォーマンスとスピード SOTA~

今日の深層学習手法は、モデルの予測結果が実際の状況に最も近くなるように、最適な目的関数を設計することに重点を置いています。同時に、予測に十分な情報を取得するには、適切なアーキテクチャを設計する必要があります。既存の方法は、入力データがレイヤーごとの特徴抽出と空間変換を受けると、大量の情報が失われるという事実を無視しています。この記事では、ディープネットワークを介してデータを送信する際の重要な問題、つまり情報のボトルネックと可逆機能について詳しく説明します。これに基づいて、深層ネットワークが複数の目的を達成するために必要なさまざまな変化に対処するために、プログラマブル勾配情報 (PGI) の概念が提案されています。 PGI は、目的関数を計算するためのターゲット タスクに完全な入力情報を提供することで、ネットワークの重みを更新するための信頼できる勾配情報を取得できます。さらに、新しい軽量ネットワーク アーキテクチャである勾配パス プランニングに基づく一般化効率層集約ネットワーク (GELAN) が設計されています。

検証結果は、GELAN アーキテクチャが軽量モデル上の PGI を通じて大きな利点を得たことを示しています。 MS COCO データセットの実験では、GELAN と PGI を組み合わせた方が、従来の畳み込み演算子のみを使用したディープ畳み込みに基づく最先端の方法よりも優れたパラメーター利用率を達成できることが示されています。 PGIの汎用性により、軽量モデルから大型モデルまで幅広く対応します。 PGI では、モデルに十分な情報が与えられるため、大規模なデータセットで事前トレーニングされた最先端のモデルよりも、最初からトレーニングされたモデルを使用した方が、より良い結果を達成することができます。

記事のアドレス: https://arxiv.org/pdf/2402.13616

コードリンク: https://github.com/WongKinYiu/yolov9

素晴らしいパフォーマンス

MS COCO データセットでのリアルタイムのターゲット検出器の比較結果によると、GELAN および PGI に基づくターゲット検出方法は、ターゲット検出の点で、最初からトレーニングされた以前の方法よりも大幅に優れています。パフォーマンス。新しい手法は、精度の点で大規模なデータセットの事前トレーニングに依存する RT DETR を上回り、パラメーターの利用の点でもディープ コンボリューション設計に基づく YOLO MS を上回ります。これらの結果は、GELAN および PGI 手法がターゲット検出の分野で潜在的な利点を持っており、将来の研究や応用において重要な技術の選択肢となる可能性があることを示しています。

YOLOは不滅です! YOLOv9 がリリースされました: パフォーマンスとスピード SOTA~

#この記事の寄稿

    既存のディープ ニューラル ネットワーク アーキテクチャを可逆関数の観点から理論的に分析します。このプロセスにより、これまで説明が困難であった多くの現象を説明することに成功しました。 PGI および補助可逆分岐もこの分析に基づいて設計され、優れた結果を達成しました。
  1. によって設計された PGI は、深い監視が非常に深いニューラル ネットワーク アーキテクチャにのみ使用できるという問題を解決し、新しい軽量アーキテクチャを日常業務に真に適用できるようにします。
  2. 設計された GELAN は、従来の畳み込みのみを使用して、最先端のテクノロジーに基づく深い畳み込み設計よりも高いパラメーターの使用量を実現しながら、軽量、高速、正確であるという大きな利点を示します。
  3. 提案された PGI と GELAN を組み合わせると、MS COCO データセット上の YOLOv9 の物体検出パフォーマンスは、あらゆる面で既存のリアルタイム物体検出器を大幅に上回ります。

方法

PGI および関連するネットワーク アーキテクチャと方法

下の図に示すように、(a ) パス集約ネットワーク (PAN)、(b) 可逆カラム (RevCol)、(c) 従来の深い監視、および (d) YOLOv9 によって提案されたプログラム可能な勾配情報 (PGI)。

YOLOは不滅です! YOLOv9 がリリースされました: パフォーマンスとスピード SOTA~

PGI は主に 3 つのコンポーネントで構成されます:

    メイン ブランチ: 推論に使用されるアーキテクチャ;
  1. 補助可逆ブランチ: メイン ブランチが逆方向に送信するための信頼できる勾配を生成します。
  2. マルチレベルの補助情報: 計画可能なマルチレベルのセマンティック情報を学習するためにメイン ブランチを制御します。

GELAN のアーキテクチャ

下図に示すように、YOLOv9 が提案する (a) CSPNet、(b) ELAN、(c) GELAN です。 。 CSPNet を模倣し、ELAN を GELAN に拡張し、あらゆるコンピューティング ブロックをサポートできます。

YOLOは不滅です! YOLOv9 がリリースされました: パフォーマンスとスピード SOTA~

結果の比較

既存技術との比較

次の表に示します。 YOLOv9 と、最初からトレーニングされた他のリアルタイム物体検出器との比較が示されています。全体として、既存の手法の中で最もパフォーマンスが高い手法は、軽量モデルの場合は YOLO MS-S、中型モデルの場合は YOLO MS、一般モデルの場合は YOLOv7 AF、大規模モデルの場合は YOLOv8-X です。 YOLOv9 は軽量モデルや中型モデルの YOLO MS と比較してパラメータが約 10%、計算量が 5 ~ 15% 減少していますが、AP は 0.4 ~ 0.6% 向上しています。 YOLOv7 AF と比較して、YOLOv9-C ではパラメータが 42% 少なく、計算が 21% 少ないにもかかわらず、同じ AP (53%) を達成します。 YOLOv8-X と比較して、YOLOv9-X ではパラメーターが 15% 減少し、計算が 25% 減少し、AP が 1.7% 増加して大幅に改善されました。上記の比較結果は、YOLOv9 があらゆる面で既存の方法に比べて大幅に改善されていることを示しています。

YOLOは不滅です! YOLOv9 がリリースされました: パフォーマンスとスピード SOTA~

最先端のリアルタイム物体検出器との比較

比較に参加するメソッドはすべて、RT DETR、RTMDet、PP-YOLOE などの ImageNet を事前トレーニングの重みとして使用します。等スクラッチ トレーニング手法を使用した YOLOv9 は、他の手法のパフォーマンスを明らかに上回っています。

YOLOは不滅です! YOLOv9 がリリースされました: パフォーマンスとスピード SOTA~

結果の視覚化

機能マップ (結果の視覚化): PlainNet 作成、異なる深さでの ResNet、CSPNet、GELAN のランダムな初期重み出力。 100 層を超えると、ResNet はターゲット情報を混乱させるのに十分なフィードフォワード出力を生成し始めます。ここで提案するGELANは、150層目でもかなり完全な情報を保持でき、200層目でも十分な識別能力を持っている。

YOLOは不滅です! YOLOv9 がリリースされました: パフォーマンスとスピード SOTA~

GELAN および YOLOv9 (GELAN PGI) の PAN 機能マップ (視覚化結果): バイアス ウォームアップのラウンド後。 GELAN には初期の分岐がいくつかありましたが、PGI の可逆分岐を追加した後は、ターゲット オブジェクトに焦点を当てることができるようになりました。

YOLOは不滅です! YOLOv9 がリリースされました: パフォーマンスとスピード SOTA~

さまざまなネットワーク アーキテクチャのランダムな初期重み出力特徴マップの視覚化された結果: (a) 入力画像、(b) PlainNet、(c) ResNet、(d) CSPNet、および (e) 提案された GELAN。図からわかるように、アーキテクチャが異なると、目的関数の損失を計算するために提供される情報の程度が異なりますが、私たちのアーキテクチャは、最も完全な情報を保持し、目的関数を計算するための最も信頼できる勾配情報を提供できます。

YOLOは不滅です! YOLOv9 がリリースされました: パフォーマンスとスピード SOTA~

結論

この論文では、PGI を使用して、情報のボトルネックと、適切ではない深い監視メカニズムの問題を解決することを提案します。軽量ニューラル ネットワークの質問です。効率的で軽量なニューラル ネットワークである GELAN を設計しました。ターゲット検出に関しては、GELAN はさまざまなコンピューティング モジュールと深度設定の下で強力で安定したパフォーマンスを示します。実際、さまざまな推論デバイスに適したモデルに幅広く拡張可能です。上記 2 つの問題に対して、PGI の導入により、軽量モデルと深層モデルの両方で大幅な精度の向上が可能になります。 YOLOv9 は PGI と GELAN を組み合わせて設計されており、強力な競争力を示します。その優れた設計により、ディープ モデルは YOLOv8 と比較してパラメータ数を 49%、計算量を 43% 削減しながらも、MS COCO データ セットで 0.6% の AP 改善を達成しています。

元のリンク: https://mp.weixin.qq.com/s/nP4JzVwn1S-MeKAzbf97uw

以上がYOLOは不滅です! YOLOv9 がリリースされました: パフォーマンスとスピード SOTA~の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
AI内部展開の隠された危険:ガバナンスのギャップと壊滅的なリスクAI内部展開の隠された危険:ガバナンスのギャップと壊滅的なリスクApr 28, 2025 am 11:12 AM

Apollo Researchの新しいレポートによると、高度なAIシステムの未確認の内部展開は、重大なリスクをもたらします。 主要なAI企業の間で一般的なこの監視の欠如は、Uncontに及ぶ潜在的な壊滅的な結果を可能にします

AIポリグラフの構築AIポリグラフの構築Apr 28, 2025 am 11:11 AM

従来の嘘検出器は時代遅れです。リストバンドで接続されたポインターに依存すると、被験者のバイタルサインと身体的反応を印刷する嘘発見器は、嘘を識別するのに正確ではありません。これが、嘘の検出結果が通常裁判所で採用されない理由ですが、多くの罪のない人々が投獄されています。 対照的に、人工知能は強力なデータエンジンであり、その実用的な原則はすべての側面を観察することです。これは、科学者がさまざまな方法で真実を求めるアプリケーションに人工知能を適用できることを意味します。 1つのアプローチは、嘘発見器のように尋問されている人の重要な符号応答を分析することですが、より詳細かつ正確な比較分析を行います。 別のアプローチは、言語マークアップを使用して、人々が実際に言うことを分析し、論理と推論を使用することです。 ことわざにあるように、ある嘘は別の嘘を繁殖させ、最終的に

AIは航空宇宙産業の離陸のためにクリアされていますか?AIは航空宇宙産業の離陸のためにクリアされていますか?Apr 28, 2025 am 11:10 AM

イノベーションの先駆者である航空宇宙産業は、AIを活用して、最も複雑な課題に取り組んでいます。 近代的な航空の複雑さの増加は、AIの自動化とリアルタイムのインテリジェンス機能を必要とします。

北京の春のロボットレースを見ています北京の春のロボットレースを見ていますApr 28, 2025 am 11:09 AM

ロボット工学の急速な発展により、私たちは魅力的なケーススタディをもたらしました。 NoetixのN2ロボットの重量は40ポンドを超えており、高さは3フィートで、逆流できると言われています。 UnitreeのG1ロボットの重量は、N2のサイズの約2倍で、高さは約4フィートです。また、競争に参加している多くの小さなヒューマノイドロボットがあり、ファンによって前進するロボットさえあります。 データ解釈 ハーフマラソンは12,000人以上の観客を惹きつけましたが、21人のヒューマノイドロボットのみが参加しました。政府は、参加しているロボットが競争前に「集中トレーニング」を実施したと指摘したが、すべてのロボットが競争全体を完了したわけではない。 チャンピオン - 北京ヒューマノイドロボットイノベーションセンターによって開発されたティアンゴニ

ミラートラップ:AI倫理と人間の想像力の崩壊ミラートラップ:AI倫理と人間の想像力の崩壊Apr 28, 2025 am 11:08 AM

人工知能は、現在の形式では、真にインテリジェントではありません。既存のデータを模倣して洗練するのに熟達しています。 私たちは人工知能を作成するのではなく、人工的な推論を作成しています。情報を処理するマシン、人間は

新しいGoogleリークは、便利なGoogle写真機能の更新を明らかにします新しいGoogleリークは、便利なGoogle写真機能の更新を明らかにしますApr 28, 2025 am 11:07 AM

レポートでは、更新されたインターフェイスがGoogle Photos Androidバージョン7.26のコードに隠されていることがわかり、写真を見るたびに、新しく検出された顔のサムネイルの行が画面の下部に表示されます。 新しいフェイシャルサムネイルには名前タグが欠落しているため、検出された各人に関する詳細情報を見るには、個別にクリックする必要があると思います。今のところ、この機能は、Googleフォトが画像で見つけた人々以外の情報を提供しません。 この機能はまだ利用できないため、Googleが正確にどのように使用するかはわかりません。 Googleはサムネイルを使用して、選択した人のより多くの写真を見つけるためにスピードアップしたり、編集して個人を選択するなど、他の目的に使用することもできます。待って見てみましょう。 今のところ

補強能力のガイド - 分析Vidhya補強能力のガイド - 分析VidhyaApr 28, 2025 am 09:30 AM

補強能力は、人間のフィードバックに基づいて調整するためにモデルを教えることにより、AI開発を揺さぶりました。それは、監督された学習基盤と報酬ベースの更新をブレンドして、より安全で、より正確に、そして本当に助けます

踊りましょう:私たちの人間のニューラルネットを微調整するための構造化された動き踊りましょう:私たちの人間のニューラルネットを微調整するための構造化された動きApr 27, 2025 am 11:09 AM

科学者は、彼らの機能を理解するために、人間とより単純なニューラルネットワーク(C. elegansのものと同様)を広く研究してきました。 ただし、重要な疑問が生じます。新しいAIと一緒に効果的に作業するために独自のニューラルネットワークをどのように適応させるのか

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。