Numpy チュートリアル: 配列を最初から作成する方法を学びます。具体的なコード例が必要です。
概要:
Numpy は、Python 用のオープンソース数学ライブラリであり、多数の数学関数とデータ構造、特に配列 (Array)。配列は機械学習やデータ分析において非常に一般的で重要なデータ構造であるため、配列の作成方法と操作方法を学ぶことが重要です。このチュートリアルは、読者がすぐに始められるように、Numpy での配列の作成を最初から紹介することを目的としています。
- Numpy ライブラリのインポート
始める前に、まず Numpy ライブラリをインポートする必要があります。通常、import ステートメントを使用して Numpy ライブラリを Python コードにインポートします。
import numpy as np
- 一次元配列の作成
Numpy では、一次元配列は同じデータ型の要素を含むリストです。 Numpy が提供するndarray
関数を使用して、1 次元配列を作成できます。
array_1d = np.array([1, 2, 3, 4, 5]) print(array_1d)
出力: [1 2 3 4 5]
- 2 次元配列の作成
2 次元配列は、複数の行を含むテーブル構造であり、列。さまざまな方法を使用して 2 次元配列を作成できますが、最も一般的な方法はリストのリストから作成する方法です。
array_2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(array_2d)
出力:
[[1 2 3] [4 5 6] [7 8 9]]
- 特定の型の配列を作成する
場合によっては、次のような特定の型の配列を作成する必要があります。すべて 0 の配列、すべて 1 の配列、または空の配列。 Numpy は、これらの特殊なタイプの配列を作成するための関数をいくつか提供します。
-
すべて 0 の配列を作成
zeros_array = np.zeros((3, 4)) print(zeros_array)
出力:
[[0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.]]
-
すべて 1 の配列を作成
ones_array = np.ones((2, 3)) print(ones_array)
出力:
[[1. 1. 1.] [1. 1. 1.]]
- #空の配列の作成
empty_array = np.empty((2, 2)) print(empty_array)
出力:[[4.94e-323 9.88e-323] [1.48e-322 1.97e-322]]
- 場合によっては、シーケンス配列、つまり等間隔の配列を作成したいことがあります。 Numpy は、このような配列を作成するための
- arange
関数とlinspace
関数を提供します。
- arange
- を使用してシーケンス配列
sequence_array = np.arange(0, 10, 2) print(sequence_array)
出力: [0 2 4 6 8]
linspace - 関数を使用してシーケンス配列
sequence_array = np.linspace(0, 1, 5) print(sequence_array)
出力: [0. 0.25 0.5 0.75 1. ]
ランダム配列の作成
- random
- 、
rand、
randn、
randintなどがあります。
random_array = np.random.random((2, 3)) print(random_array)
[[0.59525333 0.78593695 0.30467253] [0.83647996 0.09302248 0.85711096]]正規分布に従うランダム配列の作成
normal_array = np.random.randn(3, 3) print(normal_array)
[[-0.96338454 -0.44881001 0.01016194] [-0.78893991 -0.32811758 0.11091332] [ 0.87585342 0.49660924 -0.52104011]]ランダムな整数の配列を作成します
random_int_array = np.random.randint(1, 10, (2, 4)) print(random_int_array)
[[3 9 3 3] [1 9 7 5]]この記事のはじめに Numpy ライブラリでの配列の作成 (1 次元配列と 2 次元配列の作成、特定の種類の配列、シーケンス配列、ランダム配列の作成方法など) について説明し、具体的な配列を提供します。コード例。このチュートリアルが、読者が Numpy での配列の作成を理解し、習得するのに役立つことを願っています。
以上がNumpy チュートリアル: 配列の作成をゼロから学ぶの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonに2つのリストを接続する多くの方法があります。1。オペレーターを使用しますが、これはシンプルですが、大きなリストでは非効率的です。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3。=演算子を使用します。これは効率的で読み取り可能です。 4。itertools.chain関数を使用します。これはメモリ効率が高いが、追加のインポートが必要です。 5。リストの解析を使用します。これはエレガントですが、複雑すぎる場合があります。選択方法は、コードのコンテキストと要件に基づいている必要があります。

Pythonリストをマージするには多くの方法があります。1。オペレーターを使用します。オペレーターは、シンプルですが、大きなリストではメモリ効率的ではありません。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3. Itertools.chainを使用します。これは、大規模なデータセットに適しています。 4.使用 *オペレーター、1つのコードで小規模から中型のリストをマージします。 5. numpy.concatenateを使用します。これは、パフォーマンス要件の高い大規模なデータセットとシナリオに適しています。 6.小さなリストに適したが、非効率的な追加方法を使用します。メソッドを選択するときは、リストのサイズとアプリケーションのシナリオを考慮する必要があります。

compiledlanguagesOfferspeedandsecurity、foredlanguagesprovideeaseofuseandportability.1)compiledlanguageslikec arefasterandsecurebuthavelOnderdevelopmentsplat dependency.2)

Pythonでは、forループは反復可能なオブジェクトを通過するために使用され、条件が満たされたときに操作を繰り返し実行するためにしばらくループが使用されます。 1)ループの例:リストを通過し、要素を印刷します。 2)ループの例:正しいと推測するまで、数値ゲームを推測します。マスタリングサイクルの原則と最適化手法は、コードの効率と信頼性を向上させることができます。

リストを文字列に連結するには、PythonのJoin()メソッドを使用して最良の選択です。 1)join()メソッドを使用して、 '' .join(my_list)などのリスト要素を文字列に連結します。 2)数字を含むリストの場合、連結する前にマップ(str、数字)を文字列に変換します。 3) '、'などの複雑なフォーマットに発電機式を使用できます。 4)混合データ型を処理するときは、MAP(STR、Mixed_List)を使用して、すべての要素を文字列に変換できるようにします。 5)大規模なリストには、 '' .join(lage_li)を使用します

pythonusesahybridapproach、コンコイリティレーショントビテコードと解釈を組み合わせて、コードコンピレッドフォームと非依存性bytecode.2)

keydifferencesは、「for」と「while "loopsare:1)" for "for" loopsareideal forterating overencesonownowiterations、while2) "for" for "for" for "for" for "for" for "for" for for for for "wide" loopsarebetterunuinguntinunuinguntinisisisisisisisisisisisisisisisisisisisisisisisisisisisations.un

Pythonでは、さまざまな方法でリストを接続して重複要素を管理できます。1)オペレーターを使用するか、すべての重複要素を保持します。 2)セットに変換してから、リストに戻ってすべての重複要素を削除しますが、元の順序は失われます。 3)ループを使用するか、包含をリストしてセットを組み合わせて重複要素を削除し、元の順序を維持します。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境
