自然言語処理 (NLP) は、人間の言語または人間の言語に類似した言語で書かれ、話し、編成されたデータを処理するように設計された機械分野です。これは、言語を理解するためにコンピューターサイエンスの原理を使用する計算言語学に由来しています。ただし、NLP は単なる理論的枠組みの開発ではなく、特定のタスクを達成するための技術を開発することを目的とした工学分野です。 NLP は音声認識に適用されることが多く、話し言葉を単語に、音をテキストに、またはその逆に変換することに重点を置いています。ほとんどの NLP タスクには、コンピュータが受け取った情報を理解できるように人間のテキストや音声データを翻訳することが含まれます。 NLP は 2 つの分野に細分化できます:
1) 自然言語理解 (NLU) 特定のテキストの背後にある意味を理解するには、意味分析が必要です。
#2) 機械生成テキストに焦点を当てた自然言語生成 (NLG)。
NLP 会社は、NLP テクノロジーに焦点を当てています。機械が人間の言語を理解し、分析し、生成できるようにする計算アルゴリズムと言語モデル。これらの企業は、このテクノロジーを活用して、音声認識、感情分析、言語翻訳、チャットボット、テキスト分析などのさまざまな言語関連機能を提供するソフトウェア アプリケーション、ツール、およびサービスを作成しています。 NLP 企業は、NLP の専門家、言語学者、ソフトウェア エンジニアを雇用して、NLP のアルゴリズムとモデルを開発および改善しています。これらの企業が提供するサービスは、ヘルスケア、金融、顧客サービス、マーケティングなどのさまざまな業界で展開されています。社会正義、気候変動、教育などの分野における現実世界の問題を解決する際にも、その使用が加速しています。
2. 自然言語処理テクノロジー
音声認識または音声テキスト変換は、話し言葉を書き言葉に変換するテクノロジーです。このアプリは、音声コマンドを受け入れたり、音声による質問に答えたりする場合に非常に重要です。ただし、音声認識は人々の話し方に対処する必要があるため、いくつかの課題に直面しています。早口で話すこと、単語を混ぜること、強弱やイントネーションを変えること、間違った文法を使用することはすべて、音声認識のパフォーマンスに影響を与える可能性があります。したがって、これらの問題を解決するには音声認識技術の開発が重要です。
2. 品詞のマーキング: これは文法マーキングとも呼ばれます。これには、使用法と文脈に基づいて、特定の単語またはテキストの言説を識別することが含まれます。たとえば、「紙飛行機を作ることができます」という文では、談話タグは「作る」という単語を動詞として識別するのに役立ちますが、「どのメーカーの車を所有していますか?」という文では、談話タグは単語を名詞として認識するのに役立ちます。
3. 単語の意味の曖昧さの解消とは、意味分析を通じて、特定の文脈における単語の最も適切な意味を決定することです。これは、最も意味のある言葉を選択するのに役立ちます。
固有表現認識: 場所としての「ケンタッキー」や女性の名前としての「シータ」など、単語やフレーズを実体として認識します。
共参照分析とは、特定の代名詞「彼」によって参照される人や物を見つけるなど、同じエンティティを暗示する単語を識別することを指します。また、「クマ」が動物ではなく人を指していると解釈するなど、テキスト内の比喩や慣用句の意味を特定することも含まれます。
6. 感情分析: その目的は、態度、感情、皮肉、混乱、疑惑などを含む主観的な性質をテキストから抽出することです。
7. 自然言語生成: 構造化情報を人間の言語に変換することが含まれます。
NLP には明るい未来があり、継続的な進歩と革新の余地がまだあります。その将来を形作る主要なトレンドと発展を以下に示します。
1. 強化された言語モデル: GPT-3 のような NLP モデルは優れた機能を示していますが、将来的には人間の微妙なニュアンスをよりよく理解できる、より強力なモデルが登場することを間違いなく期待しています。言語を使用し、流暢で意味的に自然なテキストを生成します。
2. マルチモーダル NLP: このテクノロジーは画像やビデオなどの他のモダリティを含むように常に拡張されており、マシンがさまざまな形式のコンテンツを理解して生成できるようになります。
3. パーソナライズされた言語モデル: 生成されるデータの量が増加し続けるにつれて、NLP モデルは個人の好みやニーズに基づいてコンテンツをパーソナライズできるようになります。
4. 言語翻訳の強化: より正確でコンテキストを認識した翻訳モデルが開発されるにつれて、言語翻訳は引き続き改善されます。
NLP は、さまざまな形で世界に大きな影響を与えることができます。しかし、NLP は多くの論争にも直面しており、これらの論争を理解することも責任ある実践者の重要な責任です。したがって、上で共有した洞察から、NLP には明るい未来があり、今後数年間でこのテクノロジーのより革新的なアプリケーションが見られることが期待できることは明らかです。
#元のタイトル: Rayan Potter
以上が自然言語処理の概要の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

随着人工智能技术的发展,自然语言处理(NaturalLanguageProcessing,NLP)已经成为了一项非常重要的技术。NLP可以帮助我们更好地理解和分析人类语言,从而实现一些自动化的任务,比如智能客服、情感分析、机器翻译等。在本文中,我们将介绍使用PHP进行自然语言处理的基本知识和工具。什么是自然语言处理自然语言处理是一种利用人工智能技术来处

随着互联网时代的到来,大量的文本信息涌入我们的视野,随之而来的是人们对于信息的处理和分析需求的不断增长。同时,互联网时代也带来了自然语言处理技术的快速发展,使得人们能够更好地从文本中获取有价值的信息。其中,命名实体识别和关系抽取技术是自然语言处理应用领域的重要研究方向之一。一、命名实体识别技术命名实体指的是人、地点、组织、时间、货币、百科知识、计量术语、专业

自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域中一项重要而令人兴奋的技术,其目标是使计算机能够理解、解析和生成人类语言。NLP的发展已经取得了巨大的进步,使得计算机能够更好地与人类交互,实现更广泛的应用。本文将探讨自然语言处理的概念、技术、应用以及未来展望自然语言处理的概念自然语言处理是一门研究如何使计算机能够理解和处理人类语言的学科。人类语言的复杂性和多义性使得计算机在理解和处理上面临巨大挑战。NLP的目标是开发算法和模型,使计算机能够从文本中提取信息

在Linux系统上使用IntelliJIDEA进行自然语言处理的配置方法IntelliJIDEA是一款功能强大的集成开发环境(IDE),适用于多种编程语言。本文将介绍如何在Linux系统上配置IntelliJIDEA,以便于进行自然语言处理(NLP)的开发。步骤一:下载和安装IntelliJIDEA首先,我们需要前往官方网站https://www.

随着人工智能技术的飞速发展,自然语言处理(NaturalLanguageProcessing)在各个领域得到了广泛的应用。在文本生成领域,自然语言处理技术可以用来自动化创建高质量的文本内容,从而提升工作效率和文本质量。本文将介绍如何使用Java构建一个基于自然语言处理的智能文本生成应用程序。一、理解自然语言处理技术自然语言处理技术是指让计算机能够识别、理

如何使用C++进行高效的自然语言处理?自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域中的重要研究方向,涉及到处理和理解人类自然语言的能力。在NLP中,C++是一种常用的编程语言,因为它具有高效和强大的计算能力。本文将介绍如何使用C++进行高效的自然语言处理,并提供一些示例代码。准备工作在开始之前,首先需要准备一些

Python是一种非常强大的编程语言,支持各种应用程序和领域,包括自然语言处理(NLP)。Python的自然语言处理库nltk(NaturalLanguageToolkit)是一种支持自然语言处理的Python库,它提供了许多功能和算法来分析、操作和生成人类语言的文本数据。nltk库包含了各种预处理工具、语法分析器、语义分析器、词汇资源等功能,并采用P

译者|朱先忠重楼|审校摘要:在本博客中,我们将了解一种名为检索增强生成(retrievalaugmentedgeneration)的提示工程技术,并将基于Langchain、ChromaDB和GPT3.5的组合来实现这种技术。动机随着GPT-3等基于转换器的大数据模型的出现,自然语言处理(NLP)领域取得了重大突破。这些语言模型能够生成类似人类的文本,并已有各种各样的应用程序,如聊天机器人、内容生成和翻译等。然而,当涉及到专业化和特定于客户的信息的企业应用场景时,传统的语言模型可能满足不了要求。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。
