Linuxプログラムのコンパイル処理を詳しく解説
コンピュータ プログラミング言語は、通常、機械語、アセンブリ言語、高級言語の 3 つのカテゴリに分類されます。高級言語は実行する前に機械語に翻訳する必要があり、翻訳にはコンパイルとインタプリタの 2 つの方法があります。
したがって、高級言語は基本的に 2 つのカテゴリに分類されます。1 つは C、C、Java などのコンパイル言語で、もう 1 つは Python、Ruby、MATLAB、JavaScript などのインタープリタ言語です。
この記事では、C/C 言語で書かれた高レベル プログラムをプロセッサで実行できるバイナリ コードに変換するプロセスを紹介します。これには 4 つのステップが含まれます。
-
前処理
- 編集
- 組み立て######
- リンク中
- #GCC ツール チェーンの紹介

一般に GCC と呼ばれるのは、GUN Compiler Collection の略称で、Linux システムで一般的に使用されるコンパイル ツールです。 GCC ツール チェーン ソフトウェアには、GCC、Binutils、C ランタイム ライブラリなどが含まれます。
GCCGCC (GNU C Compiler) はコンパイル ツールです。この記事では、C/C言語で書かれたプログラムを、コンパイラによって完成される、プロセッサが実行できるバイナリコードに変換するプロセスを紹介します。
Binutilsaddr2line、ar、objcopy、objdump、as、ld、ldd、readelf、size などを含むバイナリ プログラム処理ツールのセット。開発やデバッグに欠かせないツールセットで、それぞれの紹介は以下の通りです。 addr2line: プログラム アドレスを対応するプログラム ソース ファイルおよび対応するコード行に変換し、対応する関数を取得するために使用されます。このツールは、デバッガがデバッグ中に対応するソース コードの場所を特定するのに役立ちます。
as:主にアセンブリに使用されます。アセンブリの詳細な紹介については、次の記事を参照してください。
- ld:主にリンクに使用します リンクについて詳しくは以下の記事をご覧ください。
- ar: 主に静的ライブラリを作成するために使用されます。初心者が理解しやすいように、ここでは動的ライブラリと静的ライブラリの概念を紹介します。 複数の .o オブジェクト ファイルを 1 つのライブラリ ファイルに生成する場合、2 種類のライブラリがあります。1 つは静的ライブラリ、もう 1 つは動的ライブラリです。
- Windows では、静的ライブラリは .lib 接尾辞を持つファイルであり、共有ライブラリは .dll 接尾辞を持つファイルです。 Linux では、静的ライブラリは .a 接尾辞が付いているファイルであり、共有ライブラリは .so 接尾辞が付いているファイルです。
- 静的ライブラリと動的ライブラリの違いは、コードがロードされる時間にあります。静的ライブラリのコードはコンパイル プロセス中に実行可能プログラムにロードされるため、サイズが大きくなります。共有ライブラリのコードは、実行可能プログラムの実行時にメモリにロードされ、コンパイル処理中に単純に参照されるだけであるため、コード サイズは小さくなります。 Linux システムでは、ldd コマンドを使用して、実行可能プログラムが依存する共有ライブラリを表示できます。
- システム内に同時に実行する必要があるプログラムが複数あり、これらのプログラム間に共有ライブラリがある場合は、ダイナミック ライブラリを使用するとメモリがさらに節約されます。
- ldd: 実行可能プログラムが依存する共有ライブラリを表示するために使用できます。
- objcopy: オブジェクト ファイルを別の形式に変換します (.bin から .elf への変換、または .elf から .bin への変換など)。
- objdump: その主な機能は逆アセンブリです。逆アセンブルの詳細については、次の記事を参照してください。
- readelf: ELF ファイルに関する情報を表示します。詳細については、後述を参照してください。
- size: 実行ファイルの各部分のサイズと合計サイズ、コードセグメント、データセグメント、合計サイズなどを一覧表示します。size の具体的な使用例については、以下の記事を参照してください。
- C ランタイム ライブラリ
- C 言語標準は主に 2 つの部分で構成されています。1 つの部分では C の構文について説明し、もう 1 つの部分では C 標準ライブラリについて説明します。 C 標準ライブラリは、標準ヘッダー ファイルのセットを定義します。各ヘッダー ファイルには、関連する関数、変数、型宣言、およびマクロ定義が含まれています。たとえば、一般的な printf 関数は C 標準ライブラリ関数であり、そのプロトタイプは stdio で定義されます。ヘッダファイル。
C语言标准仅仅定义了C标准库函数原型,并没有提供实现。因此,C语言编译器通常需要一个C运行时库(C Run Time Libray,CRT)的支持。C运行时库又常简称为C运行库。与C语言类似,C++也定义了自己的标准,同时提供相关支持库,称为C++运行时库。
准备工作
由于GCC工具链主要是在Linux环境中进行使用,因此本文也将以Linux系统作为工作环境。为了能够演示编译的整个过程,本节先准备一个C语言编写的简单Hello程序作为示例,其源代码如下所示:
#include //此程序很简单,仅仅打印一个Hello World的字符串。 int main(void) { printf("Hello World! \n"); return 0; }
“
编译过程
1.预处理
预处理的过程主要包括以下过程:
- 将所有的#define删除,并且展开所有的宏定义,并且处理所有的条件预编译指令,比如#if #ifdef #elif #else #endif等。
- 处理#include预编译指令,将被包含的文件插入到该预编译指令的位置。
- 删除所有注释“//”和“/* */”。
- 添加行号和文件标识,以便编译时产生调试用的行号及编译错误警告行号。
- 保留所有的#pragma编译器指令,后续编译过程需要使用它们。
使用gcc进行预处理的命令如下:
$ gcc -E hello.c -o hello.i // 将源文件hello.c文件预处理生成hello.i // GCC的选项-E使GCC在进行完预处理后即停止
hello.i文件可以作为普通文本文件打开进行查看,其代码片段如下所示:
// hello.i代码片段 extern void funlockfile (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)); # 942 "/usr/include/stdio.h" 3 4 # 2 "hello.c" 2 # 3 "hello.c" int main(void) { printf("Hello World!" "\n"); return 0; }
2.编译
编译过程就是对预处理完的文件进行一系列的词法分析,语法分析,语义分析及优化后生成相应的汇编代码。
使用gcc进行编译的命令如下:
$ gcc -S hello.i -o hello.s // 将预处理生成的hello.i文件编译生成汇编程序hello.s // GCC的选项-S使GCC在执行完编译后停止,生成汇编程序
上述命令生成的汇编程序hello.s的代码片段如下所示,其全部为汇编代码。
// hello.s代码片段 main: .LFB0: .cfi_startproc pushq %rbp .cfi_def_cfa_offset 16 .cfi_offset 6, -16 movq %rsp, %rbp .cfi_def_cfa_register 6 movl $.LC0, %edi call puts movl $0, %eax popq %rbp .cfi_def_cfa 7, 8 ret .cfi_endproc
3.汇编
汇编过程调用对汇编代码进行处理,生成处理器能识别的指令,保存在后缀为.o的目标文件中。由于每一个汇编语句几乎都对应一条处理器指令,因此,汇编相对于编译过程比较简单,通过调用Binutils中的汇编器as根据汇编指令和处理器指令的对照表一一翻译即可。
当程序由多个源代码文件构成时,每个文件都要先完成汇编工作,生成.o目标文件后,才能进入下一步的链接工作。注意:目标文件已经是最终程序的某一部分了,但是在链接之前还不能执行。
使用gcc进行汇编的命令如下:
$ gcc -c hello.s -o hello.o // 将编译生成的hello.s文件汇编生成目标文件hello.o // GCC的选项-c使GCC在执行完汇编后停止,生成目标文件 //或者直接调用as进行汇编 $ as -c hello.s -o hello.o //使用Binutils中的as将hello.s文件汇编生成目标文件
注意:hello.o目标文件为ELF(Executable and Linkable Format)格式的可重定向文件。
4.链接
链接也分为静态链接和动态链接,其要点如下:
- 静态链接是指在编译阶段直接把静态库加入到可执行文件中去,这样可执行文件会比较大。链接器将函数的代码从其所在地(不同的目标文件或静态链接库中)拷贝到最终的可执行程序中。为创建可执行文件,链接器必须要完成的主要任务是:符号解析(把目标文件中符号的定义和引用联系起来)和重定位(把符号定义和内存地址对应起来然后修改所有对符号的引用)。
- 动态链接则是指链接阶段仅仅只加入一些描述信息,而程序执行时再从系统中把相应动态库加载到内存中去。
- 在Linux系统中,gcc编译链接时的动态库搜索路径的顺序通常为:首先从gcc命令的参数-L指定的路径寻找;再从环境变量LIBRARY_PATH指定的路径寻址;再从默认路径/lib、/usr/lib、/usr/local/lib寻找。
- 在Linux系统中,执行二进制文件时的动态库搜索路径的顺序通常为:首先搜索编译目标代码时指定的动态库搜索路径;再从环境变量LD_LIBRARY_PATH指定的路径寻址;再从配置文件/etc/ld.so.conf中指定的动态库搜索路径;再从默认路径/lib、/usr/lib寻找。
- 在Linux系统中,可以用ldd命令查看一个可执行程序依赖的共享库。
由于链接动态库和静态库的路径可能有重合,所以如果在路径中有同名的静态库文件和动态库文件,比如libtest.a和libtest.so,gcc链接时默认优先选择动态库,会链接libtest.so,如果要让gcc选择链接libtest.a则可以指定gcc选项-static,该选项会强制使用静态库进行链接。以Hello World为例:
- 如果使用命令“gcc hello.c -o hello”则会使用动态库进行链接,生成的ELF可执行文件的大小(使用Binutils的size命令查看)和链接的动态库(使用Binutils的ldd命令查看)如下所示:
$ gcc hello.c -o hello $ size hello //使用size查看大小 text data bss dec hex filename 1183 552 8 1743 6cf hello $ ldd hello //可以看出该可执行文件链接了很多其他动态库,主要是Linux的glibc动态库 linux-vdso.so.1 => (0x00007fffefd7c000) libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fadcdd82000) /lib64/ld-linux-x86-64.so.2 (0x00007fadce14c000)
如果使用命令“gcc -static hello.c -o hello”则会使用静态库进行链接,生成的ELF可执行文件的大小(使用Binutils的size命令查看)和链接的动态库(使用Binutils的ldd命令查看)如下所示:
$ gcc -static hello.c -o hello $ size hello //使用size查看大小 text data bss dec hex filename 823726 7284 6360 837370 cc6fa hello //可以看出text的代码尺寸变得极大 $ ldd hello not a dynamic executable //说明没有链接动态库
链接器链接后生成的最终文件为ELF格式可执行文件,一个ELF可执行文件通常被链接为不同的段,常见的段譬如.text、.data、.rodata、.bss等段。
分析ELF文件
1.ELF文件的段
ELF文件格式如下图所示,位于ELF Header和Section Header Table之间的都是段(Section)。一个典型的ELF文件包含下面几个段:
- .text:已编译程序的指令代码段。
- .rodata:ro代表read only,即只读数据(譬如常数const)。
- .data:已初始化的C程序全局变量和静态局部变量。
- .bss:未初始化的C程序全局变量和静态局部变量。
- .debug:调试符号表,调试器用此段的信息帮助调试。

可以使用readelf -S查看其各个section的信息如下
$ readelf -S hello There are 31 section headers, starting at offset 0x19d8: Section Headers: [Nr] Name Type Address Offset Size EntSize Flags Link Info Align [ 0] NULL 0000000000000000 00000000 0000000000000000 0000000000000000 0 0 0 …… [11] .init PROGBITS 00000000004003c8 000003c8 000000000000001a 0000000000000000 AX 0 0 4 …… [14] .text PROGBITS 0000000000400430 00000430 0000000000000182 0000000000000000 AX 0 0 16 [15] .fini PROGBITS 00000000004005b4 000005b4 ……
2.反汇编ELF
由于ELF文件无法被当做普通文本文件打开,如果希望直接查看一个ELF文件包含的指令和数据,需要使用反汇编的方法。
使用objdump -D对其进行反汇编如下:
$ objdump -D hello …… 0000000000400526 : // main标签的PC地址 //PC地址:指令编码 指令的汇编格式 400526: 55 push %rbp 400527: 48 89 e5 mov %rsp,%rbp 40052a: bf c4 05 40 00 mov $0x4005c4,%edi 40052f: e8 cc fe ff ff callq 400400 400534: b8 00 00 00 00 mov $0x0,%eax 400539: 5d pop %rbp 40053a: c3 retq 40053b: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)
使用objdump -S将其反汇编并且将其C语言源代码混合显示出来:
$ gcc -o hello -g hello.c //要加上-g选项 $ objdump -S hello …… 0000000000400526 : #include int main(void) { 400526: 55 push %rbp 400527: 48 89 e5 mov %rsp,%rbp printf("Hello World!" "\n"); 40052a: bf c4 05 40 00 mov $0x4005c4,%edi 40052f: e8 cc fe ff ff callq 400400 return 0; 400534: b8 00 00 00 00 mov $0x0,%eax } 400539: 5d pop %rbp 40053a: c3 retq 40053b: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1) ……
以上がLinuxプログラムのコンパイル処理を詳しく解説の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このガイドでは、ディスクI/Oのパフォーマンスを監視およびトラブルシューティングするための必須のLinuxツールを調査します。これは、サーバーの速度とアプリケーションの応答性に影響を与える重要なメトリックです。 ディスクI/Oパフォーマンスは、データの読み取りと書き込みの速さに直接影響します

新しいLinuxユーザーの場合、接続されたデバイスを識別することが非常に重要です。特にUSBドライブです。 このガイドは、フォーマットなどのタスクに不可欠なUSBデバイスの名前を決定するためのいくつかのコマンドラインメソッドを提供します。 しばしばUSBドライブが自動マウントされることがよくあります(例: /

Linuxシステム、特にディスクスペースが限られている問題の最も一般的な問題の1つは、ルートパーティション(/)スペースの消耗です。 この問題が発生した場合、次のエラーに遭遇する可能性があります。 デバイスにスペースが残っていません 慌てないで!これは、ルートディレクトリ(/パーティション)がいっぱいであることを意味します。これは、特に24時間年中無休で実行されているディスクスペースが限られているシステムまたはサーバーが限られているシステムでの一般的な問題です。 これが発生した場合、次の問題に遭遇する可能性があります。 パッケージをインストールまたはアップグレードすることはできません。 システムの起動に失敗しました。 サービスを開始できません。 ログまたは一時ファイルに書き込むことができません。 この記事では、問題を特定し、空間を安全に清掃し、それらが再び発生するのを防ぐための実用的な手順について説明します。これらの指示は初心者に適しています

この記事では、Linuxユーザー向けのトップノッチパッドの代替品について説明します。 Notepadは、Windowsでは優れていますが、Linuxバージョンがありません。 このガイドは、さまざまなニーズや好みに合わせて多様なオプションを提供します。 のトップメモ帳の代替品

数日前、私は32ビットのCentos 8分布に遭遇し、古い32ビットシステムでテストすることにしました。 起動後、ネットワーク接続の問題を発見しました。接続が低下し、再起動するたびに手動の修復が必要になります。このPR

悪いセクターまたは悪いブロックを構成するものを明確にしましょう。これは、通常、ディスク表面に物理的な損傷またはフラッシュメモリトランジスタの誤動作があるため、読み取れない、または手書きのハードドライブまたはフラッシュメモリの一部です。 蓄積

「コピー」の略であるCPコマンドは、ファイルとディレクトリを複製するためのLinuxおよびその他のUNIXのようなシステムの基本ツールです。 ローカルファイルの転送には効率的ですが、ネットワークベースのコピーの場合、iによりSCP(セキュアコピー)が推奨されます。

RMコマンドを使用してLinuxシステムのファイルまたはディレクトリを削除する場合、次のエラーが発生した場合は次のとおりです。 RM:「ファイルまたはディレクトリ」を削除できません:デバイスまたはリソースはビジーです 心配しないでください。これは一般的な問題です。つまり、削除しようとしているファイルまたはディレクトリが現在、システムまたは実行プロセスで使用されていることを意味します。 エラーの原因 「デバイスまたはリソースビジー」メッセージは、ファイルまたはディレクトリが使用されていることを示しています。システムの損傷やデータの損失の原因を避けるために、Linuxは使用中のファイルの削除を防ぎます。 一般的な理由は次のとおりです。 ターミナルは現在、削除するディレクトリにあります。 プログラムまたはプロセスは、ファイルまたはディレクトリを使用しています。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

ドリームウィーバー CS6
ビジュアル Web 開発ツール

WebStorm Mac版
便利なJavaScript開発ツール

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

ホットトピック









