ホームページ >バックエンド開発 >Python チュートリアル >NumPy 関数について詳しく学ぶためのクイック スタート ガイド
NumPy 関数をすぐに使い始める: 詳細な紹介と具体的なコード例が必要です
はじめに: NumPy は、Python で一般的に使用される数値計算ライブラリの 1 つです。効率的な多次元配列 (ndarray) オブジェクトと強力な関数ライブラリにより、数値計算とデータ処理を迅速かつ効率的に実行できます。この記事では、NumPy でよく使用される関数をいくつか詳しく紹介し、読者がすぐに使い始めるのに役立つ具体的なコード例を使用します。
1. ndarray オブジェクトの作成
サンプル コード:
import numpy as np # 创建一维数组 a = np.array([1, 2, 3, 4, 5]) print(a) # 输出:[1 2 3 4 5] # 创建二维数组 b = np.array([[1, 2, 3], [4, 5, 6]]) print(b) # 输出: # [[1 2 3] # [4 5 6]]
サンプル コード:
import numpy as np # 创建一维数组 a = np.zeros(5) print(a) # 输出:[0. 0. 0. 0. 0.] # 创建二维数组 b = np.zeros((2, 3)) print(b) # 输出: # [[0. 0. 0.] # [0. 0. 0.]]
サンプルコード:
import numpy as np # 创建一维数组 a = np.ones(5) print(a) # 输出:[1. 1. 1. 1. 1.] # 创建二维数组 b = np.ones((2, 3)) print(b) # 输出: # [[1. 1. 1.] # [1. 1. 1.]]
2. 配列操作
サンプル コード:
import numpy as np a = np.array([[1, 2, 3], [4, 5, 6]]) print(a.shape) # 输出:(2, 3)
サンプル コード:
import numpy as np a = np.array([[1, 2, 3], [4, 5, 6]]) b = a.T # 转置 print(b) # 输出: # [[1 4] # [2 5] # [3 6]]
サンプル コード:
import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) c = np.concatenate((a, b)) # 拼接 print(c) # 输出:[1 2 3 4 5 6]
3. 配列操作
サンプル コード:
import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) c = a + b print(c) # 输出:[5 7 9]
サンプルコード:
import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) c = a * b print(c) # 输出:[4 10 18]
4. 配列の統計情報
サンプル コード:
import numpy as np a = np.array([1, 2, 3, 4, 5]) max_value = a.max() min_value = a.min() print(max_value) # 输出:5 print(min_value) # 输出:1
サンプル コード:
import numpy as np a = np.array([1, 2, 3, 4, 5]) sum_value = a.sum() print(sum_value) # 输出:15
概要: この記事では、ndarray オブジェクトの作成、配列操作、配列操作、配列統計など、NumPy でよく使用される関数をいくつか紹介します。具体的なコード例を通じて、読者はすぐに NumPy 関数を使い始め、数値計算とデータ処理の効率を向上させることができます。この記事が読者の役に立ち、NumPy の使用スキルをさらに習得できることを願っています。
以上がNumPy 関数について詳しく学ぶためのクイック スタート ガイドの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。