検索
ホームページバックエンド開発Python チュートリアルPython で一般的に使用される numpy 関数を調べる: numpy 関数を理解する

Python で一般的に使用される numpy 関数を調べる: numpy 関数を理解する

numpy 関数を理解する: Python で一般的に使用される numpy 関数を調べます。特定のコード例が必要です

はじめに:
Python では、NumPy (Numerical Python の略)これは、Python 用の効率的な多次元配列オブジェクトと多数の数学関数ライブラリを提供する強力な科学計算ライブラリです。 NumPy は、Python を使用した科学計算の中核ライブラリの 1 つであり、データ分析、機械学習、画像処理などの分野で広く使用されています。この記事では、一般的に使用される NumPy 関数をいくつか紹介し、具体的なコード例を示します。

1. 配列を作成する関数

(1) 1 次元配列の作成
numpy の arange、linspace、logspace などの関数を使用して 1 次元配列を作成できます。

コード例:

import numpy as np

arange 関数を使用して 1 次元配列を作成します

arr1 = np.arange(10)
print ("arange 関数によって作成された 1 次元配列:", arr1)

linspace 関数を使用して 1 次元配列を作成します

arr2 = np.linspace(0, 1, 10) # 0 から 10 までの等間隔の 1 の数値を生成します
print("1 次元配列は linspace 関数で作成されました:", arr2)

logspace 関数を使用して 1 次元配列を作成します

arr3 = np.logspace (0, 2, 10) # 10^0 から 10^2 までの 10 個の等間隔の対数を生成します
print("logspace 関数によって作成された 1 次元配列:", arr3)

(2) 多次元配列の作成
numpy の配列関数を使用すると、1 次元配列だけでなく、多次元配列も作成できます。

コード例:

import numpy as np

配列関数を使用して 2 次元配列を作成します

arr4 = np.array([[ 1, 2, 3],

             [4, 5, 6]])

print("配列関数で作成した二次元配列:
", arr4)

配列関数を使用して三次元配列を作成

arr5 = np.array([[[1, 2, 3],

              [4, 5, 6]],
             [[7, 8, 9],
              [10, 11, 12]]])

print("配列関数で作成した三次元配列:
", arr5)

2. 配列演算関数

NumPy は、数学関数、統計関数、論理関数などを含む豊富な配列演算関数を提供します。 NumPy の関数は、配列内の要素に対して演算を実行できます。 対数関数、三角関数、指数関数などの一部の計算を実行できます。

コード例:

import numpy as np

arr6 = np.array([1, 2 , 3, 4])

配列の 2 乗を計算します

print("配列の 2 乗:", np.square (arr6))

配列の平方根を計算します

print("配列の平方根:", np.sqrt(arr6))

配列を計算します配列の指数関数

print("配列の指数関数:", np.exp (arr6))

(2) 統計関数

NumPyの統計関数を使うと、合計、平均、最大、最小などの配列に対して統計分析を実行できます。

コード例:

import numpy as np

arr7 = np.array ([1, 2, 3, 4, 5])

配列の合計を求める

print("配列の合計:", np.sum(arr7))

配列の平均値を求める

print("配列の平均値:", np .mean(arr7))

配列の最大値を求める

print("配列の最大値:", np.max(arr7))

配列の最小値を求める Value

print("配列の最小値:", np.min(arr7))

(3) 論理関数

論理関数は、要素が特定の条件を満たすかどうかを判断するなど、配列内の要素に対して論理演算を実行します。

コード例:


import numpy as np

arr8 = np.array([1, 2, 3, 4, 5] )

要素が配列内の要素が 2 より大きいかどうかを判断します

print("配列内の要素が 2 より大きいかどうか:", np.greater(arr8, 2))

配列は 2 より大きい 配列の要素が 3 以下かどうか

print("配列の要素が 3 以下かどうか:", np.less_equal(arr8, 3 ))

3. 配列の形状関数

NumPy は、配列形状の変更、配列の結合など、配列形状操作のための多くの関数を提供します。

(1) 配列の形状を変更する

reshape 関数を使用すると、1 次元配列を 2 次元配列に変更したり、複数の配列を変更したりするなど、配列の形状を変更できます。 -次元配列を 1 次元配列に変換します。

コード例:


import numpy as np

arr9 = np.arange(9)

1 次元配列を 3 行 3 つに変換しますcolumns 二次元配列

arr10 = np.reshape(arr9, (3, 3))

print("一次元配列を二次元配列に変換:

", arr10)

多次元配列を 1 次元配列に変換します

arr11 = np.ravel(arr10)

print("多次元配列を 1 次元配列に変換します。 ", arr11)

( 2) 配列の結合

NumPy は、配列を結合するための vstack、hstack、concatenate などの関数を提供します。

コード例:


import numpy as np

arr12 = np.array([[1, 2, 3],

              [4, 5, 6]])

arr13 = np .array([[7, 8, 9],

              [10, 11, 12]])

垂直スプライシング配列

arr14 = np.vstack((arr12, arr13))

print("垂直スプライシング配列:

", arr14)

水平スプライシング配列

arr15 = np.hstack((arr12, arr13))

print("水平スプライシング配列:

", arr15 )

要約:
この記事の導入を通じて、配列を作成する関数、配列演算関数、配列形状関数など、NumPy で一般的に使用されるいくつかの関数について学びました。より便利に 配列演算や数学的計算が簡単に行え、プログラミング効率が向上 この記事を読むことで、NumPy でよく使われる関数を理解し、実際のデータ処理や科学技術計算に柔軟に応用できるようになることを願っています.

以上がPython で一般的に使用される numpy 関数を調べる: numpy 関数を理解するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonと時間:勉強時間を最大限に活用するPythonと時間:勉強時間を最大限に活用するApr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python:ゲーム、GUIなどPython:ゲーム、GUIなどApr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Python vs. C:比較されたアプリケーションとユースケースPython vs. C:比較されたアプリケーションとユースケースApr 12, 2025 am 12:01 AM

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間のPython計画:現実的なアプローチ2時間のPython計画:現実的なアプローチApr 11, 2025 am 12:04 AM

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Python:主要なアプリケーションの調査Python:主要なアプリケーションの調査Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間でどのくらいのPythonを学ぶことができますか?2時間でどのくらいのPythonを学ぶことができますか?Apr 09, 2025 pm 04:33 PM

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?Apr 02, 2025 am 07:18 AM

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか?中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか?Apr 02, 2025 am 07:15 AM

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。