ジェスチャ認識は、コンピュータ ビジョンの分野における重要な研究分野です。その目的は、ビデオ ストリームまたは画像シーケンス内の人間の手の動きを解析することによって、ジェスチャーの意味を判断することです。ジェスチャ認識は、ジェスチャ制御のスマート ホーム、仮想現実とゲーム、セキュリティ監視などの分野など、幅広い用途に利用できます。この記事では、ジェスチャ認識モデルで使用されるアルゴリズムと原理を紹介し、Python を使用して簡単なジェスチャ認識トレーニング モデルを作成します。
ジェスチャ認識モデルで使用されるアルゴリズムと原則
ジェスチャ認識モデルで使用されるアルゴリズムと原則は、深度ベースの学習モデルなど、多岐にわたります。 、従来の機械学習モデル、ルールベースの手法、および従来の画像処理手法。以下にその原理と特徴を紹介します。
1. ディープ ラーニングに基づくモデル
ディープ ラーニングは、現在最も人気のある機械学習手法の 1 つです。ジェスチャ認識の分野でも、ディープラーニングモデルが広く使用されています。深層学習モデルは、大量のデータから学習して特徴を抽出し、それらの特徴を使用して分類します。ジェスチャ認識では、深層学習モデルは多くの場合、畳み込みニューラル ネットワーク (CNN) またはリカレント ニューラル ネットワーク (RNN) を使用します。
CNN は、画像データを効果的に処理できる特殊なタイプのニューラル ネットワークです。 CNN には複数の畳み込み層とプーリング層が含まれています。畳み込み層は画像の特徴を抽出でき、プーリング層は画像のサイズを削減できます。 CNN には、分類用に完全に接続された複数の層も含まれています。
RNN は、配列データに適したニューラル ネットワークです。ジェスチャ認識では、RNN は通常、長短期記憶ネットワーク (LSTM) またはゲート反復ユニット (GRU) を使用します。 RNN は、前のジェスチャ シーケンスを学習することで、次のジェスチャを予測できます。 LSTM と GRU は、RNN の勾配消失問題を回避し、モデルがより長いジェスチャ シーケンスを学習できるようにします。
深層学習に基づくモデルには次の特徴があります:
- 複雑なジェスチャ シーケンスを処理できます;
- 特徴を自動的に抽出できる;
- はトレーニングに大量のデータが必要;
- はトレーニングに時間がかかる;
- は大量のコンピューティング リソースを必要とする。
2. 従来の機械学習モデル
従来の機械学習モデルには、サポート ベクター マシン (SVM)、デシジョン ツリー、ランダム フォレストが含まれます等これらのモデルは通常、SIFT、HOG などの手作業で設計された機能を使用します。これらの機能により、ジェスチャの形状や質感などの情報を抽出できます。
- ##従来の機械学習モデルには次の特徴があります:
- より単純なジェスチャ シーケンスを処理できる;
- 機能の手動設計が必要;
- トレーニング時間が短縮されます;
- トレーニングに必要なデータは少量です;
- トレーニング結果の解釈が容易になります。
- 迅速に設計および実装できます;
- 専門的な知識と経験が必要です。
- は特定のジェスチャ タイプのみを処理できます。
- は複雑なジェスチャ シーケンスには適していません。
- 単純なジェスチャを処理できる;
- 手動の設計が必要機能;
- トレーニング時間が短縮されます;
- トレーニングに必要なデータは少量です;
- トレーニング結果の解釈が容易になります。
import cv2 import os import numpy as np IMG_SIZE = 200 def preprocess_data(data_dir): X = [] y = [] for folder_name in os.listdir(data_dir): label = folder_name folder_path = os.path.join(data_dir, folder_name) for img_name in os.listdir(folder_path): img_path = os.path.join(folder_path, img_name) img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) img = cv2.resize(img, (IMG_SIZE, IMG_SIZE)) img = img/255.0 X.append(img) y.append(label) X = np.array(X) y = np.array(y) return X, y3. モデルを構築する 次に、畳み込みニューラル ネットワークに基づいてモデルを構築します。具体的には、Keras ライブラリの Sequential モデルを使用してモデルを構築します。モデルには、複数の畳み込み層とプーリング層、および複数の完全に接続された層が含まれています。
from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout def build_model(): model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(IMG_SIZE, IMG_SIZE, 1))) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(256, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(29, activation='softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model4. トレーニング モデル
接下来,我们将使用准备好的数据集和构建好的模型来训练模型。我们将使用Keras库中的fit方法来训练模型。
X_train, y_train = preprocess_data('asl_alphabet_train') X_test, y_test = preprocess_data('asl_alphabet_test') from keras.utils import to_categorical y_train = to_categorical(y_train) y_test = to_categorical(y_test) model = build_model() model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))
5.评估模型
最后,我们将评估模型的性能。我们将使用Keras库中的evaluate方法来评估模型在测试集上的性能。
test_loss, test_acc = model.evaluate(X_test, y_test) print('Test accuracy:', test_acc)
结论
本文介绍了手势识别模型使用的算法和原理,并使用Python创建了一个简单的手势识别训练模型。我们使用了基于深度学习的方法,并使用Keras和TensorFlow库来构建和训练模型。最后,我们评估了模型在测试集上的性能。手势识别是一个复杂的问题,需要综合考虑多个因素,例如手势序列的长度、手势的复杂度等。因此,在实际应用中,需要根据具体需求选择合适的算法和模型。
以上がジェスチャ認識モデルのアルゴリズムと原理を調べる (Python で単純なジェスチャ認識トレーニング モデルを作成する)の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

Python 3.6のピクルスファイルのロードレポートエラー:modulenotFounderror:nomodulenamed ...

風光明媚なスポットコメント分析におけるJieba Wordセグメンテーションの問題を解決する方法は?風光明媚なスポットコメントと分析を行っているとき、私たちはしばしばJieba Wordセグメンテーションツールを使用してテキストを処理します...


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

メモ帳++7.3.1
使いやすく無料のコードエディター

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン
