検索
ホームページテクノロジー周辺機器AI教師あり分類アルゴリズムとその仕組みのレビュー

教師あり分類アルゴリズムとその仕組みのレビュー

教師あり分類に使用されるアルゴリズムはデータを分類および予測でき、機械学習の分野で最も一般的に使用されるアルゴリズムの 1 つです。これらのアルゴリズムは、画像認識、音声認識、信用評価、リスク分析など、さまざまな分野でデータを分類できます。教師あり分類アルゴリズムは、企業、機関、個人が、分類による消費者の購買行動の予測、患者の健康状態の判断、スパムの特定などのデータ分析と意思決定を行うのに役立ちます。さらに、これらのアルゴリズムは、自然言語処理、機械翻訳、ロボット制御などの分野でも使用できます。つまり、教師あり分類のアルゴリズムはさまざまな分野で広く利用されており、業務効率や意思決定の質の向上に大きな意義を持っています。

以下は、教師あり分類に使用される一般的なアルゴリズムとその原理の紹介です。

デシジョン ツリー: さまざまな特性に応じて、データは、さまざまなカテゴリに対応する複数の領域に分割されます。

単純ベイズ分類器は、各特徴が互いに独立していると仮定して、ベイズの定理、事前確率、および条件付き確率を使用してデータを分類します。

サポート ベクター マシンは、超平面を構築することでさまざまなカテゴリのデータを分離するアルゴリズムです。超平面から最も近いデータ ポイントまでの距離を最大化することで、分類の精度が向上します。 2 次元では、超平面は直線として見ることができます。

ロジスティック回帰: このアルゴリズムは、ロジスティック関数を使用して分類モデルを構築します。ロジスティック関数の入力は特徴値の加重合計であり、出力は特徴値に属する確率です。特定のクラスであり、分類の結果は、しきい値より大きいデータ ポイントがこのカテゴリに属する​​確率となります。

ランダム フォレスト: 複数の決定木を組み合わせてフォレストを形成し、各決定木が独立してデータを分類し、最終的に投票によって最終的な分類結果を決定するアルゴリズムです。

最近傍アルゴリズム: このアルゴリズムは、新しいデータと既知のデータを比較して、最も近いデータ ポイントを見つけます。このポイントの分類が新しいデータの分類になります。

ニューラル ネットワーク: このアルゴリズムは、複数の層のニューロン (ノード) を構築することによってデータを分類します。各ニューロンは、入力データと出力データの関係を学習することによって自身を決定します。

AdaBoost アルゴリズム: このアルゴリズムは、複数の弱分類器を繰り返しトレーニングし (分類精度はランダムな推測よりわずかに高い)、これらの弱分類器を組み合わせて強分類器にします。誤って分類されたデータ ポイントがより高い重みを受け取るように、データ セットの重みを設定します。

勾配ブースティング アルゴリズム: このアルゴリズムも、弱分類器を反復的にトレーニングし、それらを組み合わせて強分類器にします。違いは、勾配降下法によって分類器のパラメーターを調整することです。

線形判別分析: このアルゴリズムは、データを低次元空間に投影して、さまざまなカテゴリのデータをできる限り分離し、分類のために新しいデータをこの空間に投影します。

アンサンブル学習アルゴリズム: これらのアルゴリズムは、バギングやブースティングなどの複数の分類器を組み合わせることで分類精度を向上させます。

マルチカテゴリ分類アルゴリズム: これらのアルゴリズムは、1 対多や 1 対 1 の分類方法など、複数のカテゴリの分類問題を処理するために使用されます。

ディープ ラーニング アルゴリズム: このアルゴリズムは、畳み込みニューラル ネットワークやリカレント ニューラル ネットワークなどの多層ニューラル ネットワークを構築することによってデータを分類します。

決定ルール アルゴリズム: このアルゴリズムは、C4.5 アルゴリズムや CN2 アルゴリズムなどの一連のルールを生成することによってデータを分類します。

フィッシャー判別分析アルゴリズム: このアルゴリズムは、カテゴリ間の距離を最大化し、カテゴリ内の分散を最小化することによって分類を実行します。

線形回帰アルゴリズム: このアルゴリズムは、特徴値の加重和の関数である線形モデルを確立することによってデータを分類します。

デシジョン フォレスト アルゴリズム: このアルゴリズムはランダム フォレストの変形であり、ランダム サブスペースのアイデアを使用し、トレーニング プロセス中にデシジョン ツリーごとに異なる機能を使用します。

パーセプトロン アルゴリズム: このアルゴリズムは、入力データと出力データの間の関係を学習し、データを 2 つのカテゴリに分類することによって超平面を決定します。

混合ガウス モデル アルゴリズム: このアルゴリズムは、複数のガウス分布を使用してデータをモデル化し、各ガウス分布はカテゴリに対応します。

改良された KNN アルゴリズム: このアルゴリズムは分類に KNN アルゴリズムを使用しますが、欠落している特徴値については KNNImpute アルゴリズムを使用して埋め、KNN アルゴリズムを使用して影響を軽減します。ノイズ。

以上が教師あり分類アルゴリズムとその仕組みのレビューの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は网易伏羲で複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
Gemma Scope:AI'の思考プロセスを覗くためのGoogle'の顕微鏡Gemma Scope:AI'の思考プロセスを覗くためのGoogle'の顕微鏡Apr 17, 2025 am 11:55 AM

ジェマの範囲で言語モデルの内部の仕組みを探る AI言語モデルの複雑さを理解することは、重要な課題です。 包括的なツールキットであるGemma ScopeのGoogleのリリースは、研究者に掘り下げる強力な方法を提供します

ビジネスインテリジェンスアナリストは誰で、どのようになるか?ビジネスインテリジェンスアナリストは誰で、どのようになるか?Apr 17, 2025 am 11:44 AM

ビジネスの成功のロック解除:ビジネスインテリジェンスアナリストになるためのガイド 生データを組織の成長を促進する実用的な洞察に変換することを想像してください。 これはビジネスインテリジェンス(BI)アナリストの力です - GUにおける重要な役割

SQLに列を追加する方法は? - 分析VidhyaSQLに列を追加する方法は? - 分析VidhyaApr 17, 2025 am 11:43 AM

SQLの変更テーブルステートメント:データベースに列を動的に追加する データ管理では、SQLの適応性が重要です。 その場でデータベース構造を調整する必要がありますか? Alter Tableステートメントはあなたの解決策です。このガイドの詳細は、コルを追加します

ビジネスアナリストとデータアナリストビジネスアナリストとデータアナリストApr 17, 2025 am 11:38 AM

導入 2人の専門家が重要なプロジェクトで協力している賑やかなオフィスを想像してください。 ビジネスアナリストは、会社の目標に焦点を当て、改善の分野を特定し、市場動向との戦略的整合を確保しています。 シム

ExcelのCountとCountaとは何ですか? - 分析VidhyaExcelのCountとCountaとは何ですか? - 分析VidhyaApr 17, 2025 am 11:34 AM

Excelデータカウントと分析:カウントとカウントの機能の詳細な説明 特に大規模なデータセットを使用する場合、Excelでは、正確なデータカウントと分析が重要です。 Excelは、これを達成するためにさまざまな機能を提供し、CountおよびCounta関数は、さまざまな条件下でセルの数をカウントするための重要なツールです。両方の機能はセルをカウントするために使用されますが、設計ターゲットは異なるデータ型をターゲットにしています。 CountおよびCounta機能の特定の詳細を掘り下げ、独自の機能と違いを強調し、データ分析に適用する方法を学びましょう。 キーポイントの概要 カウントとcouを理解します

ChromeはAIと一緒にここにいます:毎日何か新しいことを体験してください!!ChromeはAIと一緒にここにいます:毎日何か新しいことを体験してください!!Apr 17, 2025 am 11:29 AM

Google Chrome'sAI Revolution:パーソナライズされた効率的なブラウジングエクスペリエンス 人工知能(AI)は私たちの日常生活を急速に変換しており、Google ChromeはWebブラウジングアリーナで料金をリードしています。 この記事では、興奮を探ります

ai' s Human Side:Wellbeing and the Quadruple bottuntai' s Human Side:Wellbeing and the Quadruple bottuntApr 17, 2025 am 11:28 AM

インパクトの再考:四重材のボトムライン 長い間、会話はAIの影響の狭い見方に支配されており、主に利益の最終ラインに焦点を当てています。ただし、より全体的なアプローチは、BUの相互接続性を認識しています

5ゲームを変える量子コンピューティングの使用ケースあなたが知っておくべきである5ゲームを変える量子コンピューティングの使用ケースあなたが知っておくべきであるApr 17, 2025 am 11:24 AM

物事はその点に向かって着実に動いています。量子サービスプロバイダーとスタートアップに投資する投資は、業界がその重要性を理解していることを示しています。そして、その価値を示すために、現実世界のユースケースの数が増えています

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。