オブジェクト追跡はコンピュータ ビジョンにおける重要なタスクであり、交通監視、ロボット工学、医療画像処理、自動車両追跡などの分野で広く使用されています。深層学習手法を使用して、ターゲット オブジェクトの初期位置を決定した後、ビデオ内の連続する各フレーム内のターゲット オブジェクトの位置を予測または推定します。オブジェクト追跡は実生活において幅広い用途があり、コンピュータ ビジョンの分野でも非常に重要です。
オブジェクト追跡には、通常、オブジェクト検出のプロセスが含まれます。オブジェクト追跡手順の概要は次のとおりです:
1. オブジェクト検出では、アルゴリズムがオブジェクトの周囲に境界ボックスを作成することによってオブジェクトを分類および検出します。
2. 各オブジェクトに一意の識別 (ID) を割り当てます。
3. 検出されたオブジェクトの動きをフレーム単位で追跡し、関連情報を保存します。
ターゲット追跡の種類
ターゲット追跡には、画像追跡とビデオ追跡の 2 種類があります。
画像追跡
画像追跡は、画像を自動的に識別して追跡するタスクです。主に拡張現実(AR)の分野で使用されます。たとえば、カメラを介して 2D 画像が供給されると、アルゴリズムは 2D 平面画像を検出し、それを 3D グラフィック オブジェクトのオーバーレイに使用できます。
ビデオ トラッキング
ビデオ トラッキングは、ビデオ内の移動オブジェクトを追跡するタスクです。ビデオ トラッキングの考え方は、各ビデオ フレームに表示されるターゲット オブジェクトを関連付けたり、それらの間の関係を確立したりすることです。言い換えれば、ビデオ トラッキングはビデオ フレームを順番に分析し、オブジェクトの周囲に境界ボックスを予測して作成することで、オブジェクトの過去の位置と現在の位置をつなぎ合わせます。
ビデオ追跡は、リアルタイム映像を処理できるため、交通監視、自動運転車、セキュリティで広く使用されています。
ターゲット追跡プロセスの 4 つの段階
フェーズ 1: ターゲットの初期化
定義オブジェクトまたは目標。ビデオの最初のフレームの周囲に境界ボックスを描画するプロセスと組み合わせます。トラッカーは、境界ボックスを描画しながら、残りのフレーム内のオブジェクトの位置を推定または予測する必要があります。
フェーズ 2: 外観モデリング
外観モデリングには、オブジェクトの視覚的な外観のモデリングが含まれます。ターゲット オブジェクトが照明条件、角度、速度などのさまざまなシナリオを通過すると、オブジェクトの外観が変化し、エラー メッセージが表示され、アルゴリズムがオブジェクトの追跡を失う可能性があります。したがって、ターゲット オブジェクトが移動するときに生じるさまざまな変化や歪みをモデリング アルゴリズムで捉えることができるように、外観モデリングが必要になります。
#外観モデリングは 2 つの部分で構成されます:- 視覚的表現: オブジェクトを説明できる堅牢な機能と表現の構築に焦点を当てます
- 統計モデリング: 統計学習技術を使用して、物体認識のための数学的モデルを効率的に構築します。
#深層学習に基づくターゲット追跡手法
ターゲット追跡では、追跡モデルの精度を向上させるために多くの手法が導入されています。セックスと効率。一部の方法には、k 最近傍法やサポート ベクター マシンなどの古典的な機械学習方法が含まれます。以下では、ターゲット追跡タスクのためのいくつかの深層学習アルゴリズムについて説明します。
MDNet
大規模なデータをトレーニングに利用するターゲット追跡アルゴリズム。 MDNet は、事前トレーニングとオンライン視覚追跡で構成されます。
事前トレーニング: 事前トレーニングでは、ネットワークはマルチドメイン表現を学習する必要があります。この目標を達成するために、アルゴリズムは複数の注釈付きビデオでトレーニングされ、表現と空間的特徴を学習します。
オンライン視覚追跡: 事前トレーニングが完了すると、ドメイン固有のレイヤーが削除され、学習された表現を含む共有レイヤーのみがネットワークに残ります。推論中に、バイナリ分類レイヤーが追加され、オンラインでトレーニングまたは微調整されます。
この手法は時間を節約し、効果的なオンラインベースの追跡アルゴリズムであることが証明されています。
GOTURN
深層回帰ネットワークは、オフライン トレーニングに基づいたモデルです。このアルゴリズムは、オブジェクトの動きと外観の間の一般的な関係を学習し、トレーニング セットに表示されないオブジェクトを追跡するために使用できます。
回帰ネットワーク (GOTURN) を使用した汎用オブジェクト追跡では、回帰ベースのアプローチを使用してオブジェクトを追跡します。基本的に、ネットワークを介した 1 つのフィードフォワード パスのみでターゲット オブジェクトを見つけるために直接回帰します。ネットワークは、現在のフレームの検索エリアと前のフレームのターゲットという 2 つの入力を受け入れます。次に、ネットワークはこれらの画像を比較して、現在の画像内のターゲット オブジェクトを見つけます。
ROLO
ROLO はリカレント ニューラル ネットワークと YOLO を組み合わせたものです。一般に、LSTM は CNN と組み合わせて使用するのに適しています。
ROLO は 2 つのニューラル ネットワークを組み合わせたものです: 1 つは空間情報の抽出に使用される CNN、もう 1 つはターゲット オブジェクトの軌道の検索に使用される LSTM ネットワークです。各タイム ステップで、空間情報が抽出されて LSTM に送信され、追跡されたオブジェクトの位置が返されます。
DeepSORT
DeepSORT は、最も人気のあるターゲット追跡アルゴリズムの 1 つであり、SORT の拡張機能です。
SORT は、カルマン フィルターを使用して、オブジェクトの以前の位置を考慮してその位置を推定する、オンライン ベースの追跡アルゴリズムです。カルマン フィルターはオクルージョンに対して非常に効果的です。
SORT を理解した後、深層学習テクノロジーを組み合わせて SORT アルゴリズムを強化できます。ディープ ニューラル ネットワークではターゲット画像の特徴を記述することができるため、SORT はオブジェクトの位置をより正確に推定できます。
SiamMask
は、完全畳み込みシャム ネットワークのオフライン トレーニング プロセスを改善するように設計されています。 Siamese ネットワークは、密な空間特徴表現を取得するために、トリミングされた画像とより大きな検索画像の 2 つの入力を受け入れます。
シャム ネットワークは、2 つの入力画像の類似性を測定し、同じオブジェクトが両方の画像に存在するかどうかを判断する出力を生成します。バイナリ セグメンテーション タスクを使用して損失を増やすことにより、このフレームワークはオブジェクト追跡に非常に効果的です。
JDE
JDE は、マルチタスクの学習問題を解決するために設計されたシングルショット検出器です。 JDE は、オブジェクトの検出と共有モデルへの外観の埋め込みを学習します。
JDE は、バックボーンとして Darknet-53 を使用して、各レイヤーでの特徴表現を取得します。これらの特徴表現は、アップサンプリングと残差接続を使用して融合されます。次に、予測ヘッダーが融合された特徴表現の上に追加され、高密度の予測マップが生成されます。オブジェクト追跡を実行するために、JDE は予測ヘッドからバウンディング ボックス クラスと外観の埋め込みを生成します。これらの外観の埋め込みは、類似性行列を使用して以前に検出されたオブジェクトの埋め込みと比較されます。
Tracktor
Tracktor は、オンライン追跡アルゴリズムです。オブジェクト検出メソッドを使用して、検出タスクのみでニューラル ネットワークをトレーニングすることで追跡を実行します。基本的に、境界ボックス回帰を計算することにより、次のフレーム内のオブジェクトの位置を予測します。追跡データに対してトレーニングや最適化は実行されません。
Tracktor のオブジェクト検出器は通常、101 層の ResNet と FPN を備えた Faster R-CNN です。 Faster R-CNN の回帰ブランチを使用して、現在のフレームから特徴を抽出します。
以上がコンピュータビジョンにおけるターゲット追跡の概念の解釈の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ChatGptはアクセスできませんか?この記事では、さまざまな実用的なソリューションを提供しています!多くのユーザーは、ChatGPTを毎日使用する場合、アクセス不能や応答が遅いなどの問題に遭遇する可能性があります。この記事では、さまざまな状況に基づいてこれらの問題を段階的に解決するように導きます。 ChatGPTのアクセス不能性と予備的なトラブルシューティングの原因 まず、問題がOpenaiサーバー側にあるのか、ユーザー自身のネットワークまたはデバイスの問題にあるのかを判断する必要があります。 以下の手順に従って、トラブルシューティングしてください。 ステップ1:OpenAIの公式ステータスを確認してください OpenAIステータスページ(status.openai.com)にアクセスして、ChatGPTサービスが正常に実行されているかどうかを確認してください。赤または黄色のアラームが表示されている場合、それは開くことを意味します

2025年5月10日、MIT物理学者のMax Tegmarkは、AI Labsが人工的なスーパーインテリジェンスを解放する前にOppenheimerの三位一体計算をエミュレートすべきだとGuardianに語った。 「私の評価では、「コンプトン定数」、競争が

AI Music Creation Technologyは、1日ごとに変化しています。この記事では、ChatGPTなどのAIモデルを例として使用して、AIを使用して音楽の作成を支援し、実際のケースで説明する方法を詳細に説明します。 Sunoai、Hugging Face、PythonのMusic21 Libraryを通じて音楽を作成する方法を紹介します。 これらのテクノロジーを使用すると、誰もがオリジナルの音楽を簡単に作成できます。ただし、AIに生成されたコンテンツの著作権問題は無視できないことに注意する必要があります。使用する際には注意する必要があります。 音楽分野でのAIの無限の可能性を一緒に探りましょう! Openaiの最新のAIエージェント「Openai Deep Research」が紹介します。 [chatgpt] ope

ChATGPT-4の出現により、AIアプリケーションの可能性が大幅に拡大しました。 GPT-3.5と比較して、CHATGPT-4は大幅に改善されました。強力なコンテキスト理解能力を備えており、画像を認識して生成することもできます。普遍的なAIアシスタントです。それは、ビジネス効率の改善や創造の支援など、多くの分野で大きな可能性を示しています。ただし、同時に、その使用における予防策にも注意を払わなければなりません。 この記事では、ChATGPT-4の特性を詳細に説明し、さまざまなシナリオの効果的な使用方法を紹介します。この記事には、最新のAIテクノロジーを最大限に活用するためのスキルが含まれています。参照してください。 Openaiの最新のAIエージェント、「Openai Deep Research」の詳細については、以下のリンクをクリックしてください

ChatGPTアプリ:AIアシスタントで創造性を解き放つ!初心者向けガイド ChatGPTアプリは、文章作成、翻訳、質問応答など、多様なタスクに対応する革新的なAIアシスタントです。創作活動や情報収集にも役立つ、無限の可能性を秘めたツールです。 この記事では、ChatGPTスマホアプリのインストール方法から、音声入力機能やプラグインといったアプリならではの機能、そしてアプリ利用上の注意点まで、初心者にも分かりやすく解説します。プラグインの制限やデバイス間の設定同期についてもしっかりと触れていきま

Chatgpt中国語版:中国語のAIの対話の新しい体験のロックを解除する ChatGptは世界中で人気がありますが、中国語版も提供していることをご存知ですか?この強力なAIツールは、毎日の会話をサポートするだけでなく、プロのコンテンツを処理し、簡素化された伝統的な中国語と互換性があります。中国のユーザーであろうと、中国語を学んでいる友人であろうと、あなたはそれから利益を得ることができます。 この記事では、アカウント設定、中国語の迅速な単語入力、フィルターの使用、さまざまなパッケージの選択を含むChatGpt中国語のバージョンの使用方法を詳細に紹介し、潜在的なリスクと対応戦略を分析します。さらに、ChatGpt中国語版を他の中国のAIツールと比較して、その利点とアプリケーションシナリオをよりよく理解するのに役立ちます。 Openaiの最新のAIインテリジェンス

これらは、生成AIの分野で次の飛躍と考えることができ、ChatGptやその他の大規模なモデルのチャットボットを提供しました。単に質問に答えたり情報を生成したりするのではなく、彼らは私たちに代わって行動を起こすことができます。

ChatGPTを活用した効率的な複数アカウント管理術|ビジネスとプライベートの使い分けも徹底解説! 様々な場面で活用されているChatGPTですが、複数アカウントの管理に頭を悩ませている方もいるのではないでしょうか。この記事では、ChatGPTの複数アカウント作成方法、利用上の注意点、そして安全かつ効率的な運用方法を詳しく解説します。ビジネス利用とプライベート利用の使い分け、OpenAIの利用規約遵守といった重要な点にも触れ、複数アカウントを安全に活用するためのガイドを提供します。 OpenAI


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

Dreamweaver Mac版
ビジュアル Web 開発ツール
