双方向 LSTM モデルは、テキスト分類に使用されるニューラル ネットワークです。以下は、テキスト分類タスクに双方向 LSTM を使用する方法を示す簡単な例です。
まず、必要なライブラリとモジュールをインポートする必要があります:
import os import numpy as np from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Dense, Embedding, Bidirectional, LSTM from sklearn.model_selection import train_test_split
次に、データセットを準備する必要があります。ここでは、データ セットが指定されたパスにすでに存在し、train.txt、dev.txt、test.txt の 3 つのファイルが含まれていると仮定します。各ファイルには、一連のテキストと対応するタグが含まれています。次のコードを使用してデータセットをロードできます:
def load_imdb_data(path): assert os.path.exists(path) trainset, devset, testset = [], [], [] with open(os.path.join(path, "train.txt"), "r") as fr: for line in fr: sentence_label, sentence = line.strip().lower().split("\t", maxsplit=1) trainset.append((sentence, sentence_label)) with open(os.path.join(path, "dev.txt"), "r") as fr: for line in fr: sentence_label, sentence = line.strip().lower().split("\t", maxsplit=1) devset.append((sentence, sentence_label)) with open(os.path.join(path, "test.txt"), "r") as fr: for line in fr: sentence_label, sentence = line.strip().lower().split("\t", maxsplit=1) testset.append((sentence, sentence_label)) return trainset, devset, testset
データセットをロードした後、テキストを前処理してシリアル化できます。ここでは、テキストのセグメンテーションに Tokenizer を使用し、LSTM モデルに適用できるように、各単語のインデックス シーケンスを同じ長さにパディングします。
max_features = 20000 maxlen = 80 # cut texts after this number of words (among top max_features most common words) batch_size = 32 print('Pad & split data into training set and dev set') x_train, y_train = [], [] for sent, label in trainset: x_train.append(sent) y_train.append(label) x_train, y_train = pad_sequences(x_train, maxlen=maxlen), np.array(y_train) x_train, y_train = np.array(x_train), np.array(y_train) x_dev, y_dev = [], [] for sent, label in devset: x_dev.append(sent) y_dev.append(label) x_dev, y_dev = pad_sequences(x_dev, maxlen=maxlen), np.array(y_dev) x_dev, y_dev = np.array(x_dev), np.array(y_dev)
次に、双方向 LSTM モデルを構築できます。このモデルでは、2 つの LSTM 層を使用します。1 つは情報を前方に渡し、もう 1 つは情報を逆方向に渡します。これら 2 つの LSTM 層の出力は連結されて、テキストを表すより強力なベクトルを形成します。最後に、分類に全結合層を使用します。
print('Build model...') model = Sequential() model.add(Embedding(max_features, 128, input_length=maxlen)) model.add(Bidirectional(LSTM(64))) model.add(LSTM(64)) model.add(Dense(1, activation='sigmoid')) print('Compile model...') model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
これで、モデルをトレーニングできます。開発データセットを検証データとして使用して、トレーニング中にオーバーフィットしないことを確認します。
epochs = 10 batch_size = 64 history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_dev, y_dev))
トレーニングが完了したら、テスト セットでモデルのパフォーマンスを評価できます。
test_loss, test_acc = model.evaluate(x_test, y_test) print('Test accuracy:', test_acc)
上記は、双方向 LSTM モデルの単純なテキスト分類の例です。パフォーマンスを向上させるために、レイヤーの数、ニューロンの数、オプティマイザーなどのモデルのパラメーターを調整してみることもできます。または、事前トレーニング済みの単語埋め込み (Word2Vec や GloVe など) を使用して埋め込み層を置き換え、より多くのセマンティック情報を取得します。
以上がテキスト分類に双方向 LSTM モデルを使用するケーススタディの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

導入 迅速なエンジニアリングでは、「思考のグラフ」とは、グラフ理論を使用してAIの推論プロセスを構造化および導く新しいアプローチを指します。しばしば線形sを含む従来の方法とは異なります

導入 おめでとう!あなたは成功したビジネスを運営しています。ウェブページ、ソーシャルメディアキャンペーン、ウェビナー、会議、無料リソース、その他のソースを通じて、毎日5000の電子メールIDを収集します。次の明白なステップはです

導入 今日のペースの速いソフトウェア開発環境では、最適なアプリケーションパフォーマンスが重要です。応答時間、エラーレート、リソース利用などのリアルタイムメトリックを監視することで、メインに役立ちます

「ユーザーは何人いますか?」彼は突き出した。 「私たちが最後に言ったのは毎週5億人のアクティブであり、非常に急速に成長していると思います」とアルトマンは答えました。 「わずか数週間で2倍になったと言った」とアンダーソンは続けた。 「私はそのprivと言いました

導入 Mistralは、最初のマルチモーダルモデル、つまりPixtral-12B-2409をリリースしました。このモデルは、Mistralの120億個のパラメーターであるNemo 12bに基づいて構築されています。このモデルを際立たせるものは何ですか?これで、画像とTexの両方を採用できます

クエリに応答するだけでなく、情報を自律的に収集し、タスクを実行し、テキスト、画像、コードなどの複数のタイプのデータを処理するAIを搭載したアシスタントがいることを想像してください。未来的に聞こえますか?これでa

導入 金融業界は、効率的な取引と信用の可用性を促進することにより経済成長を促進するため、あらゆる国の発展の基礎となっています。取引の容易さとクレジット

導入 データは、ソーシャルメディア、金融取引、eコマースプラットフォームなどのソースから前例のないレートで生成されています。この連続的な情報ストリームを処理することは課題ですが、


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

メモ帳++7.3.1
使いやすく無料のコードエディター

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター
