pandas ライブラリの共通関数をマスターして、ビッグデータを簡単に処理します。具体的なコード例が必要です。
ビッグデータ時代の到来により、データ処理はPython で最も一般的に使用されるデータ処理ライブラリの 1 つである pandas ライブラリは、その強力な機能と柔軟な処理方法により、大多数のデータ アナリストや科学者に愛されています。この記事では、pandas ライブラリでよく使用される関数をいくつか紹介し、読者がすぐに使い始めてビッグ データを簡単に処理できるように、具体的なコード例を示します。
- データの読み取りと書き込み
pandas では、データを読み取るさまざまな方法が提供されています。最も一般的に使用されるのは、csv ファイルを読み取る方法です。 pandas.read_csv()
関数を使用して、csv ファイルを DataFrame オブジェクトに直接読み取ります。
import pandas as pd # 读取csv文件 data = pd.read_csv('data.csv')
同様に、pandas.DataFrame.to_csv()
関数を使用して、DataFrame オブジェクトを CSV ファイルに書き込むことができます。
# 将DataFrame对象写入csv文件 data.to_csv('result.csv', index=False)
- データの表示
ビッグ データを扱う場合は、まずデータの全体的な状況を理解する必要があります。 Pandas には、データの最初の数行、最後の数行、および全体的な統計概要情報を表示するのに役立つ、一般的に使用される関数がいくつか用意されています。
-
head()
関数は DataFrame の最初の数行を表示でき、デフォルトでは最初の 5 行が表示されます。
# 查看前5行数据 print(data.head())
-
tail()
関数は DataFrame の最後の数行を表示でき、デフォルトでは最後の 5 行が表示されます。
# 查看后5行数据 print(data.tail())
-
describe()
関数は、数、平均、標準偏差、最小値、最大値などを含む、DataFrame の統計概要情報を表示できます。
# 查看统计摘要信息 print(data.describe())
- データのスクリーニングとフィルタリング
ビッグデータを処理する場合、多くの場合、特定の条件に基づいてデータをスクリーニングし、フィルタリングする必要があります。 Pandas は、この機能を実現するためによく使用される関数をいくつか提供します。
-
loc[]
関数を使用して、タグでデータをフィルターします。
# 筛选某一列中值大于10的数据 filtered_data = data.loc[data['column'] > 10]
-
isin()
関数を使用して、リスト内の値に基づいてフィルター処理します。
# 筛选某一列中值在列表[1,2,3]中的数据 filtered_data = data[data['column'].isin([1, 2, 3])]
-
query()
関数を使用して、条件式に基づいてフィルタリングします。
# 筛选某一列中值大于10且小于20的数据 filtered_data = data.query('10 < column < 20')
- データの並べ替えと再配置
ビッグ データを扱う場合、データの並べ替えと再配置は多くの場合不可欠な操作です。 Pandas は、この機能を実現するために複数の関数を提供します。
-
sort_values()
関数を使用して、指定された列に従ってデータを並べ替えます。
# 按照某一列的值对数据进行升序排序 sorted_data = data.sort_values(by='column', ascending=True)
-
sort_index()
関数を使用して、インデックスに従ってデータを並べ替えます。
# 按照索引对数据进行升序排序 sorted_data = data.sort_index(ascending=True)
- データのグループ化と集計
ビッグ データを処理する場合、多くの場合、特定の条件に従ってデータをグループ化し、各グループに対して集計計算を実行する必要があります。 Pandas は、このタスクを達成するために役立つ複数の関数を提供します。
-
groupby()
関数を使用して、特定の列ごとにグループ化します。
# 根据某一列进行分组 grouped_data = data.groupby('column')
-
agg()
関数を使用して、グループ化されたデータに対して集計計算を実行します。
# 对分组后的数据进行求和操作 sum_data = grouped_data.agg({'column': 'sum'})
- データのマージと接続
ビッグ データを扱う場合、多くの場合、複数のデータ セットをマージまたは結合する必要があります。 Pandas は、この機能を実現するために複数の関数を提供します。
-
merge()
関数を使用して、指定された列に基づいて 2 つのデータ セットを結合します。
# 按照某一列进行合并 merged_data = pd.merge(data1, data2, on='column')
-
concat()
関数を使用して、複数のデータ セットを行または列に結合します。
# 按行连接两个数据集 concatenated_data = pd.concat([data1, data2], axis=0)
上記では、pandas ライブラリでよく使われる関数と具体的なコード例を紹介しましたので、読者がビッグデータを処理する際の参考になれば幸いです。もちろん、pandas ライブラリにはより強力な機能があり、より複雑なシナリオになると、公式ドキュメントやその他の資料をさらに探索できます。読者がビッグデータを簡単に扱い、より良い分析結果を達成できることを願っています。
以上が一般的に使用されるパンダ関数を使用して大規模なデータを簡単に処理する方法を学びますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonまたはCの選択は、プロジェクトの要件に依存します。1)迅速な開発、データ処理、およびプロトタイプ設計が必要な場合は、Pythonを選択します。 2)高性能、低レイテンシ、および緊密なハードウェアコントロールが必要な場合は、Cを選択します。

毎日2時間のPython学習を投資することで、プログラミングスキルを効果的に改善できます。 1.新しい知識を学ぶ:ドキュメントを読むか、チュートリアルを見る。 2。練習:コードと完全な演習を書きます。 3。レビュー:学んだコンテンツを統合します。 4。プロジェクトの実践:実際のプロジェクトで学んだことを適用します。このような構造化された学習計画は、Pythonを体系的にマスターし、キャリア目標を達成するのに役立ちます。

2時間以内にPythonを効率的に学習する方法は次のとおりです。1。基本的な知識を確認し、Pythonのインストールと基本的な構文に精通していることを確認します。 2。変数、リスト、関数など、Pythonのコア概念を理解します。 3.例を使用して、基本的および高度な使用をマスターします。 4.一般的なエラーとデバッグテクニックを学習します。 5.リストの概念を使用したり、PEP8スタイルガイドに従ったりするなど、パフォーマンスの最適化とベストプラクティスを適用します。

Pythonは初心者やデータサイエンスに適しており、Cはシステムプログラミングとゲーム開発に適しています。 1. Pythonはシンプルで使いやすく、データサイエンスやWeb開発に適しています。 2.Cは、ゲーム開発とシステムプログラミングに適した、高性能と制御を提供します。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Pythonはデータサイエンスと迅速な発展により適していますが、Cは高性能およびシステムプログラミングにより適しています。 1. Python構文は簡潔で学習しやすく、データ処理と科学的コンピューティングに適しています。 2.Cには複雑な構文がありますが、優れたパフォーマンスがあり、ゲーム開発とシステムプログラミングでよく使用されます。

Pythonを学ぶために1日2時間投資することは可能です。 1.新しい知識を学ぶ:リストや辞書など、1時間で新しい概念を学びます。 2。練習と練習:1時間を使用して、小さなプログラムを書くなどのプログラミング演習を実行します。合理的な計画と忍耐力を通じて、Pythonのコアコンセプトを短時間で習得できます。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。
