勾配ブースティング ツリーは、デシジョン ツリー モデルを反復的にトレーニングし、複数のデシジョン ツリー モデルに重みを付けて融合して、より強力な分類または回帰モデルを構築するアンサンブル学習アルゴリズムです。このアルゴリズムは加算モデルに基づいており、新しい決定木モデルはそれぞれ、以前のモデルの残差を最小限に抑えるように設計されています。最終モデルの予測結果は、すべての決定木モデルの加重平均です。勾配ブースト ツリーは、精度と堅牢性が高いため広く使用されています。
具体的には、勾配ブースト ツリーの原理は次のとおりです。
まず、勾配ブースト ツリーの原理は次のとおりです。 、トレーニング データ セットはトレーニング セットと検証セットに分かれています。トレーニング セットを使用して、基本デシジョン ツリー モデルを初期モデルとしてトレーニングします。
まず、トレーニング セットの残差、つまり真の値と予測値の差を計算します。次に、残差を新しいターゲット変数として使用して、その上で新しいデシジョン ツリー モデルをトレーニングします。最後に、新しいモデルが初期モデルと重み付けされて融合されます。
まず、初期モデルと新しいモデルの予測結果の重み付け融合を実行して、新しい予測結果を取得します。次に、新しい予測と真の値の間の残差を計算し、その残差を新しいターゲット変数として使用します。次に、この新しいターゲット変数を使用して新しいデシジョン ツリー モデルをトレーニングし、前のモデルと重み付けされた融合を実行します。このようにして、予測モデルを継続的かつ反復的に改善して、より正確な予測結果を得ることができます。
4. 所定の反復回数に達するか、検証セットでのモデルのパフォーマンスが低下し始めるまで、上記の手順を繰り返します。
5. 最後に、複数の決定木モデルの予測結果が重み付けされて融合され、最終的な予測結果が得られます。
勾配ブースティング ツリーでは、新しいデシジョン ツリー モデルはそれぞれ以前のモデルに基づいてトレーニングされるため、新しいモデルはそれぞれ以前のモデルの誤差を修正します。このようにして、複数の反復を通じて、勾配ブースティング ツリーはモデルのパフォーマンスを継続的に向上させることができ、それによってより良い分類または回帰結果が得られます。
特定の実装では、勾配ブースティング ツリーは通常、勾配降下法を使用してモデル パラメーターを最適化します。具体的には、損失関数の負の勾配を計算することによってモデルのパラメーターを更新し、それによって損失関数を最小化することができます。分類問題では、通常、クロスエントロピー損失関数が使用され、回帰問題では、通常、二乗損失関数が使用されます。
勾配ブースティング ツリーの利点は、データの過剰な前処理を必要とせず、欠損値や離散特徴を直接処理できることです。ただし、反復ごとに新しいデシジョン ツリー モデルをトレーニングする必要があるため、勾配ブースト ツリーのトレーニング速度は遅くなります。また、反復回数が多すぎたり、決定木が深すぎたりするとモデルが過学習してしまうため、一定の正則化処理が必要となります。
勾配ブースティング ツリーが早期に停止するかどうか?
勾配ブースティング ツリーでは、早期に停止することで過学習を回避し、モデルの汎化能力を向上させることができます。一般に、相互検証などの方法を通じて、早期に停止するための最適なラウンド数を決定できます。
具体的には、トレーニング データをフィッティングする際にテスト セットでのモデルのパフォーマンスが低下し始めていることが判明した場合は、オーバーフィッティングを避けるためにトレーニングを停止できます。さらに、より深いツリーを使用したり、より大きな学習率を使用したりすると、モデルが過学習になる可能性があり、この場合、早期に停止することによって一定の利点が得られます。
つまり、早期停止は勾配ブースティング ツリーにおける一般的な正則化方法であり、これは過学習を回避し、モデルの汎化能力を向上させるのに役立ちます。
以上が勾配ブースティング ツリー アルゴリズムの基本原理の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

導入 シナリオを想像してみてください。チームは、多様なソースからの大規模なデータセットに圧倒されます。 意味のあるプレゼンテーションのためにこの情報を統合、並べ替え、分析することは課題です。これは、パワーバイセマンティックモデル(PBISM)Ex

AIエージェント:LlamaindexとMonsterapiを搭載したAIの未来 AIエージェントは、テクノロジーとの対話方法に革命をもたらす態勢を整えています。 これらの自律システムは、人間の行動を模倣し、推論、意思決定、およびREAを必要とするタスクを実行します

自律AIのロック解除:自己トレーニングLLMの7つの方法 子どもたちが複雑な概念を独立して習得するように、AIシステムが人間の介入なしに学び、進化する未来を想像してください。これはサイエンスフィクションではありません。それは自己の約束です

AI搭載の財務報告:自然言語生成による洞察の革命 今日のダイナミックなビジネス環境では、戦略的意思決定には正確でタイムリーな財務分析が最重要です。 従来の財務報告

Google Deepmind's Table Tennis Robot:スポーツとロボット工学の新しい時代 パリ2024年のオリンピックは終わったかもしれませんが、Google Deepmindのおかげで、スポーツとロボット工学の新しい時代が夜明けです。 彼らの画期的な研究(「「人間レベルの競争を達成する」

Gemini Flash 1.5による効率とスケーラビリティのロック解除:Flask Food Vision WebApp 急速に進化するAIの状況では、効率とスケーラビリティが最重要です。 開発者は、コストとレイテンシを最小限に抑える高性能モデルをますます求めています

llamaindexを使用してAIエージェントのパワーを活用:ステップバイステップガイド 迅速な計算であろうと最新の市場ニュースを取得するかどうかにかかわらず、リクエストを理解し、完璧に実行するパーソナルアシスタントを想像してください。この記事で探求します

Jupyter Notebook(.ipynb)ファイルは、データ分析、科学的コンピューティング、およびインタラクティブエンコーディングで広く使用されています。これらのノートブックは、他のデータサイエンティストとコードを開発および共有するのに最適ですが、PDFなどのより一般的に読みやすい形式に変換する必要がある場合があります。このガイドでは、.ipynbファイルをPDFに変換するさまざまな方法、およびヒント、ベストプラクティス、およびトラブルシューティングの提案をご覧ください。 目次 .ipynbをPDFに変換する理由 .ipynbファイルをPDFに変換する方法 JupyterノートブックUIを使用します nbconveを使用します


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

ドリームウィーバー CS6
ビジュアル Web 開発ツール

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、
