pandas ライブラリは、Python で一般的に使用されるデータ処理および分析ツールであり、データのインポート、クリーニング、処理、分析、視覚化を簡単に完了できる豊富な関数とメソッドを提供します。 。この記事では、pandas ライブラリでよく使用される関数のクイック スタート ガイドを、具体的なコード例とともに紹介します。
- データ インポート
pandas ライブラリは、read_csv、read_excel、その他の関数を通じて、さまざまな形式のデータ ファイルを簡単にインポートできます。以下はサンプル コードです。
import pandas as pd # 从csv文件中导入数据 data = pd.read_csv('data.csv') # 从excel文件中导入数据 data = pd.read_excel('data.xlsx')
- データ表示
pandas ライブラリには、データの最初と最後の数行を表示するための head、tail、およびその他の関数が用意されています。以下はサンプル コードです。
# 查看数据的前5行 print(data.head()) # 查看数据的后5行 print(data.tail())
- データ クリーニング
pandas ライブラリには、欠損値を処理するための Dropna や fillna などの関数と、特定の値を置換するための replace などの関数が用意されています。価値観。以下はサンプル コードです。
# 删除含有缺失值的行 data = data.dropna() # 使用均值填充缺失值 data = data.fillna(data.mean()) # 将特定的值替换为其他值 data['column_name'] = data['column_name'].replace('old_value', 'new_value')
- データのスライスとフィルタリング
pandas ライブラリは、iloc や loc などの関数を通じてデータのスライスとフィルタリングを実装します。以下はサンプル コードです。
# 使用位置索引切片 subset = data.iloc[1:10, 2:5] # 使用标签索引切片 subset = data.loc[data['column_name'] == 'value'] # 使用条件筛选 subset = data[data['column_name'] > 10]
- データの並べ替えとランキング
pandas ライブラリは、データの並べ替えとランキング操作を実装するための sort_values や sort_index などの関数を提供します。以下はサンプル コードです。
# 按列进行排序 data = data.sort_values('column_name') # 按索引进行排序 data = data.sort_index() # 对列进行排名 data['column_rank'] = data['column_name'].rank()
- データの集計と計算
pandas ライブラリには、データの集計と計算を実装するための groupby、agg、およびその他の関数が用意されています。以下はサンプル コードです。
# 对列进行聚合操作 grouped_data = data.groupby('column_name').sum() # 对多列进行聚合操作 grouped_data = data.groupby(['column_name1', 'column_name2']).mean() # 对列进行自定义的聚合操作 aggregated_data = data.groupby('column_name').agg({'column_name': 'mean', 'column_name2': 'sum'})
- データ視覚化
pandas ライブラリは、データを視覚化するためのプロット関数を提供します。以下はサンプル コードです。
# 绘制折线图 data.plot(x='column_name', y='column_name2', kind='line') # 绘制散点图 data.plot(x='column_name', y='column_name2', kind='scatter') # 绘制柱状图 data.plot(x='column_name', y='column_name2', kind='bar')
この記事では、pandas ライブラリでよく使用されるいくつかの関数と、対応する特定のコード例を簡単に紹介します。これらの機能の使い方を学び使いこなすことで、より効率的にデータを処理・分析できるようになります。もちろん、pandas ライブラリには、誰もが見つけて適用できるようになる、より強力な機能があります。 pandas ライブラリについてさらに詳しく知りたい場合は、公式ドキュメントまたは関連するチュートリアルとサンプル コードをチェックしてください。
以上がpandas ライブラリでよく使用される関数のクイック スタート ガイドの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

Python 3.6のピクルスファイルのロードレポートエラー:modulenotFounderror:nomodulenamed ...


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

メモ帳++7.3.1
使いやすく無料のコードエディター

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。
