ID3 アルゴリズムは、決定木学習の基本アルゴリズムの 1 つです。各特徴の情報ゲインを計算して決定木を生成することにより、最適な分割点を選択します。情報ゲインは ID3 アルゴリズムの重要な概念であり、分類タスクに対する特徴の寄与を測定するために使用されます。この記事では、ID3 アルゴリズムにおける情報ゲインの概念、計算方法、応用について詳しく紹介します。
1. 情報エントロピーの概念
情報エントロピーは、確率変数の不確実性を測定する情報理論の概念です。離散確率変数の場合
このうち、n は確率変数 X の取り得る値の数を表し、p(x_i) は確率変数 X が取り得る確率を表します値 x_i をとります。情報エントロピーの単位はビットであり、確率変数を平均的にエンコードするために必要な最小ビット数を測定するために使用されます。
情報エントロピーの値が大きいほど、確率変数はより不確実になり、その逆も同様です。たとえば、可能な値が 2 つだけある確率変数の場合、2 つの値の確率が等しい場合、その情報エントロピーは 1 になります。これは、それをエンコードするには 1 ビットのコーディング長が必要であることを意味します。値の 1 つが 1 で、別の値の確率が 0 の場合、その情報エントロピーは 0 になります。これは、その値をコーディングせずに決定できることを意味します。
2. 条件付きエントロピーの概念
決定木の学習では、分類タスクに対する特徴の寄与を計算する必要があります。特徴の分類能力を測定するために、与えられた特徴による分類の不確実性、つまり条件付きエントロピーを計算できます。特徴 A に m 個の値があると仮定します。各値について、この値の下でターゲット変数の確率分布を計算し、対応する情報エントロピーを計算し、最後に次のように定義される条件付きエントロピーを見つけることができます。
#H(Y|X)=\sum_{i=1}^{m}\frac{|X_i|}{|X|}H(Y|X=X_i)
#このうち、|X| は、A_i の条件における対象変数 Y の情報エントロピーであるサンプル集合のサイズを表します。 3. 情報利得の概念 情報利得とは、特徴 A が次の条件でサンプル集合 X を分割するために A を使用することを指します。得られる情報エントロピーの削減量は既知です。情報ゲインが大きいほど、特徴 A を使用してサンプル セット X を分割することによって得られる情報エントロピーが減少します。つまり、分類タスクに対する特徴 A の寄与が大きくなります。情報ゲインの定義は次のとおりです。 IG(Y,X)=H(Y)-H(Y|X) ここで、H(Y) はターゲット変数 Y の情報エントロピー、H(Y|X) は特徴 A の条件下でのターゲット変数 Y の条件付きエントロピーです。 4. ID3 アルゴリズムでの情報ゲインの計算 ID3 アルゴリズムでは、サンプル セット X を分割するために最適な特徴を選択する必要があります。 。各特徴 A について、その情報ゲインを計算し、最大の情報ゲインを持つ特徴を分割点として選択できます。具体的には、各特徴 A について、まず特徴の各値を持つサンプルの数を計算し、次に特徴の各値を持つターゲット変数の確率分布を計算し、対応する情報エントロピーを計算します。次に、特徴 A の条件付きエントロピーを計算し、情報エントロピーから条件付きエントロピーを減算して情報ゲインを取得します。最後に、最大の情報利得を持つ特徴を分割点として選択します。 実際のアプリケーションでは、過学習を防ぐために、ゲイン比を使用して最適な特徴を選択するなど、情報ゲインを最適化します。ゲイン比は、特徴エントロピーに対する情報ゲインの比率であり、特徴 A 自体の情報量に対するサンプル セット X を分割するために特徴 A を使用することによって得られる情報ゲインを表します。ゲイン比は、特徴がより多くの値を持つ場合、情報ゲインがより多くの値を持つ特徴を選択する傾向があるという問題を解決できます。 つまり、情報獲得は ID3 アルゴリズムにおける非常に重要な概念であり、分類タスクに対する特徴の寄与を測定するために使用されます。 ID3 アルゴリズムでは、各特徴の情報利得を計算することによって最適な分割点を選択し、それによって決定木を生成します。実際のアプリケーションでは、ゲイン比を使用して最適な特徴を選択するなど、情報ゲインを最適化できます。以上がid3 アルゴリズムにおける情報獲得の役割は何ですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

AIの急速な統合により悪化した職場での急成長能力の危機は、増分調整を超えて戦略的な変化を要求します。 これは、WTIの調査結果によって強調されています。従業員の68%がワークロードに苦労しており、BURにつながります

ジョン・サールの中国の部屋の議論:AIの理解への挑戦 Searleの思考実験は、人工知能が真に言語を理解できるのか、それとも真の意識を持っているのかを直接疑問に思っています。 チャインを無知な人を想像してください

中国のハイテク大手は、西部のカウンターパートと比較して、AI開発の別のコースを図っています。 技術的なベンチマークとAPI統合のみに焦点を当てるのではなく、「スクリーン認識」AIアシスタントを優先しています。

MCP:AIシステムに外部ツールにアクセスできるようになります モデルコンテキストプロトコル(MCP)により、AIアプリケーションは標準化されたインターフェイスを介して外部ツールとデータソースと対話できます。人類によって開発され、主要なAIプロバイダーによってサポートされているMCPは、言語モデルとエージェントが利用可能なツールを発見し、適切なパラメーターでそれらを呼び出すことができます。ただし、環境紛争、セキュリティの脆弱性、一貫性のないクロスプラットフォーム動作など、MCPサーバーの実装にはいくつかの課題があります。 Forbesの記事「人類のモデルコンテキストプロトコルは、AIエージェントの開発における大きなステップです」著者:Janakiram MSVDockerは、コンテナ化を通じてこれらの問題を解決します。 Docker Hubインフラストラクチャに基づいて構築されたドキュメント

最先端のテクノロジーと巧妙なビジネスの洞察力を活用して、コントロールを維持しながら非常に収益性の高いスケーラブルな企業を作成する先見の明のある起業家によって採用された6つの戦略。このガイドは、建設を目指している起業家向けのためのものです

Google Photosの新しいウルトラHDRツール:画像強化のゲームチェンジャー Google Photosは、強力なウルトラHDR変換ツールを導入し、標準的な写真を活気のある高ダイナミックレンジ画像に変換しました。この強化は写真家に利益をもたらします

技術アーキテクチャは、新たな認証の課題を解決します エージェントアイデンティティハブは、AIエージェントの実装を開始した後にのみ多くの組織が発見した問題に取り組んでいます。

(注:Googleは私の会社であるMoor Insights&Strategyのアドバイザリークライアントです。) AI:実験からエンタープライズ財団まで Google Cloud Next 2025は、実験機能からエンタープライズテクノロジーのコアコンポーネント、ストリームへのAIの進化を紹介しました


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

Dreamweaver Mac版
ビジュアル Web 開発ツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ホットトピック









