SORT (Simple Online and Realtime Tracking) は、カルマン フィルターに基づくターゲット追跡アルゴリズムであり、リアルタイム シーンで移動ターゲットを確実に追跡できます。 SORT アルゴリズムは、もともと 2016 年に Alex Bewley らによって提案されました。ビデオ監視、自動運転、ロボット ナビゲーションなど、コンピューター ビジョンの分野のさまざまなアプリケーションで広く使用されています。
SORT アルゴリズムは主に、カルマン フィルタリングとハンガリー アルゴリズムという 2 つの核となるアイデアに基づいています。カルマン フィルターはシステム状態を推定するためのアルゴリズムであり、システムの動的モデルとセンサーの測定値を使用してシステム状態を予測および更新し、状態推定の精度を向上させることができます。ハンガリー アルゴリズムは、2 部グラフの最大重み一致問題を解くために使用されるアルゴリズムで、2 部グラフから最大重み一致を見つけることができます。
SORT アルゴリズムの主な手順は次のとおりです。
ターゲット検出: ターゲット検出アルゴリズム (YOLO、SSD など) を使用します。 .) 現在のフレームのターゲット情報内のオブジェクトを抽出します。
状態予測: 追跡されたターゲットごとに、カルマン フィルターを使用してその状態を予測します。
データ関連付け: 現在のフレームの予測ステータスとターゲット情報に基づいて、ハンガリーアルゴリズムを使用してデータ関連付けを実行し、現在のフレームで追跡された各ターゲットに対応するターゲットを見つけます。 。
ステータス更新: 追跡されたターゲットごとに、カルマン フィルターを使用してステータスを更新します。
ターゲット出力: 追跡された各ターゲットのステータス情報と追跡結果を出力します。
コンピュータ ビジョンでは、SORT アルゴリズムをさまざまなターゲット追跡シナリオに適用できます。たとえば、ビデオ監視では、SORT アルゴリズムは移動するターゲットをリアルタイムで追跡できるため、現場での異常な動作の検出と早期警告が可能になります。自動運転の分野では、SORT アルゴリズムは他の車両、歩行者、その他の交通参加者を追跡して、車両の自律ナビゲーションと障害物回避を実現できます。ロボット ナビゲーションでは、SORT アルゴリズムは移動ターゲットを追跡して、ロボットの自律ナビゲーションと障害物回避を実現します。
以下は、Python で実装された簡単なサンプル コードです。
#python import numpy as np from filterpy.kalman import KalmanFilter from scipy.optimize import linear_sum_assignment class Track: def init(self,prediction,track_id,track_lifetime): self.prediction=np.atleast_2d(prediction) self.track_id=track_id self.track_lifetime=track_lifetime self.age=0 self.total_visible_count=1 self.consecutive_invisible_count=0 def predict(self, kf): self.prediction = kf.predict() self.age += 1 def update(self, detection, kf): self.prediction = kf.update(detection) self.total_visible_count += 1 self.consecutive_invisible_count = 0 def mark_missed(self): self.consecutive_invisible_count += 1 def is_dead(self): return self.consecutive_invisible_count >= self.track_lifetime class Tracker: def init(self,track_lifetime,detection_variance,process_variance): self.next_track_id=0 self.tracks=[] self.track_lifetime=track_lifetime self.detection_variance=detection_variance self.process_variance=process_variance self.kf=KalmanFilter(dim_x=4,dim_z=2) self.kf.F=np.array([[1,0,1,0], [0,1,0,1], [0,0,1,0], [0,0,0,1]]) self.kf.H=np.array([[1,0,0,0], [0,1,0,0]]) self.kf.R=np.array([[self.detection_variance,0], [0,self.detection_variance]]) self.kf.Q=np.array([[self.process_variance,0,0,0], [0,self.process_variance,0,0], [0,0,self.process_variance,0], [0,0,0,self.process_variance]]) def update(self, detections): # predict track positions using Kalman filter for track in self.tracks: track.predict(self.kf) # associate detections with tracks using Hungarian algorithm if len(detections) > 0: num_tracks = len(self.tracks) num_detections = len(detections) cost_matrix = np.zeros((num_tracks, num_detections)) for i, track in enumerate(self.tracks): for j, detection in enumerate(detections): diff = track.prediction - detection distance = np.sqrt(diff[0,0]**2 + diff[0,1]**2) cost_matrix[i,j] = distance row_indices, col_indices = linear_sum_assignment(cost_matrix) unassigned_tracks = set(range(num_tracks)) - set(row_indices) unassigned_detections = set(range(num_detections)) - set(col_indices) for i, j in zip(row_indices, col_indices): self.tracks[i].update(detections[j], self.kf) for i in unassigned_tracks: self.tracks[i].mark_missed() for j in unassigned_detections: new_track = Track(detections[j], self.next_track_id, self.track_lifetime) self.tracks.append(new_track) self.next_track_id += 1 # remove dead tracks self.tracks = [track for track in self.tracks if not track.is_dead()] # return list of track positions return [track.prediction.tolist()[0] for track in self.tracks]
上記のコードは、カルマン フィルターを使用してターゲットの位置を計算し、速度 予測と推定を行い、ハンガリーのアルゴリズムを使用してターゲットを関連付け、最後にターゲットが連続して見えなくなった回数に基づいてターゲットが死亡しているかどうかを判断し、死亡したターゲットを削除します。上記のコードは、単純な SORT 追跡アルゴリズムを実装しています。カルマン フィルターを使用してターゲットの位置と速度を予測および推定し、次にハンガリーのアルゴリズムを使用してターゲットを関連付け、最後にターゲットが死亡しているかどうかを判断し、数値に基づいて死亡を除去します。目標の連続した目に見えない時間の目標。
SORT アルゴリズムに加えて、カルマン フィルター、粒子フィルター、マルチターゲット追跡など、他の多くのターゲット追跡アルゴリズムがあります。各アルゴリズムには、適用可能なシナリオ、利点と欠点があります。実際のアプリケーションでは、特定のシナリオとニーズに基づいてターゲット追跡のための適切なアルゴリズムを選択する必要があります。
以上がSORT 追跡アルゴリズムとその Python 実装例の簡単な紹介の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonの柔軟性は、マルチパラダイムサポートと動的タイプシステムに反映されていますが、使いやすさはシンプルな構文とリッチ標準ライブラリに由来しています。 1。柔軟性:オブジェクト指向、機能的および手続き的プログラミングをサポートし、動的タイプシステムは開発効率を向上させます。 2。使いやすさ:文法は自然言語に近く、標準的なライブラリは幅広い機能をカバーし、開発プロセスを簡素化します。

Pythonは、初心者から上級開発者までのすべてのニーズに適した、そのシンプルさとパワーに非常に好まれています。その汎用性は、次のことに反映されています。1)学習と使用が簡単、シンプルな構文。 2)Numpy、Pandasなどの豊富なライブラリとフレームワーク。 3)さまざまなオペレーティングシステムで実行できるクロスプラットフォームサポート。 4)作業効率を向上させるためのスクリプトおよび自動化タスクに適しています。

はい、1日2時間でPythonを学びます。 1.合理的な学習計画を作成します。2。適切な学習リソースを選択します。3。実践を通じて学んだ知識を統合します。これらの手順は、短時間でPythonをマスターするのに役立ちます。

Pythonは迅速な開発とデータ処理に適していますが、Cは高性能および基礎となる制御に適しています。 1)Pythonは、簡潔な構文を備えた使いやすく、データサイエンスやWeb開発に適しています。 2)Cは高性能で正確な制御を持ち、ゲームやシステムのプログラミングでよく使用されます。

Pythonを学ぶのに必要な時間は、人によって異なり、主に以前のプログラミングの経験、学習の動機付け、学習リソースと方法、学習リズムの影響を受けます。現実的な学習目標を設定し、実用的なプロジェクトを通じて最善を尽くします。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

メモ帳++7.3.1
使いやすく無料のコードエディター

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

WebStorm Mac版
便利なJavaScript開発ツール

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。
