検索
ホームページテクノロジー周辺機器AIGoogle、AIが出力精度を独立して判断できるモデルトレーニングフレームワーク「ASPIRE」をリリース

可令 AI 自我判断输出内容正确性,谷歌公布模型训练框架 ASPIRE

Google は最近、大規模な言語モデル向けに特別に設計された ASPIRE トレーニング フレームワークの開始を発表するプレス リリースを発行しました。このフレームワークは、AI モデルの選択的予測機能を向上させることを目的としています。

可令 AI 自我判断输出内容正确性,谷歌公布模型训练框架 ASPIRE

Google は、大規模な言語モデルは自然言語理解とコンテンツ生成において急速に発展しており、さまざまな革新的なアプリケーションの構築に使用されていますが、これらは高度な用途で使用する必要があると述べました。リスクへの適用 意思決定の場面では依然として不適切です。これは、モデル予測の不確実性と「幻覚」の可能性によるものです。そのため、Google は、一連のモデルに「信頼性」メカニズムを導入する ASPIRE トレーニング フレームワークを開発しました。一連の回答。各回答には正解スコア となる確率があります。

可令 AI 自我判断输出内容正确性,谷歌公布模型训练框架 ASPIRE

▲ 画像出典 Google プレスリリース (以下同)

技術レベルでは、トレーニング フレームワークは 3 つの段階に分けることができます: 具体的なタスクの調整、回答 サンプリングと自己評価学習。

「特定のタスクの調整」段階では、基礎トレーニングを受けた大規模言語モデルの詳細なトレーニングを実施します。

モデルの予測能力の強化に重点を置きます。研究者は主に、一連の調整可能なパラメーターをモデルに導入し、特定のタスクのトレーニング データセットに基づいて事前トレーニングされた言語モデルを微調整します。これにより、モデルの予測パフォーマンスが向上し、モデルが特定の問題をより適切に解決できるようになります。

可令 AI 自我判断输出内容正确性,谷歌公布模型训练框架 ASPIRE第 2 段階は「回答サンプリング」です。特定の微調整の後、モデルは以前に学習した調整可能なパラメータを使用して、トレーニング質問ごとに異なる回答を生成できます。自己評価学習用のデータセットを使用して、高い信頼性を持ってさまざまな回答を生成します。

研究者らはまた、「ビーム検索」法と Rouge-L アルゴリズムを使用して回答の品質を評価し、生成された回答とスコアをモデルに再入力して第 3 段階を開始しました。

「自己評価学習」の第 3 段階では、研究者らは、特にモデルの自己評価機能を向上させるために、一連の調整可能なパラメーターをモデルに追加しました。 可令 AI 自我判断输出内容正确性,谷歌公布模型训练框架 ASPIREこの段階の目標は、モデルに「出力された答えの精度を自分で判断する」ことを学習させることです

。これにより、大規模な言語モデルが答えを生成するときに、正しい確率スコアも付加されます。答え。

Google 研究者は、CoQA、TriviaQA、SQuAD の 3 つの質問と回答のデータセットを使用して、ASPIRE トレーニング フレームワークの結果を検証しました。「ASPIRE によって調整された OPT-2.7B 小型モデルのパフォーマンスがはるかに優れている」と言われています。大型の OPT-30B モデルよりも優れています。実験結果は、適切な調整を行えば、シナリオによっては小規模な言語モデルでも大規模な言語モデルを上回る可能性があることも示しています。

研究者らは、可令 AI 自我判断输出内容正确性,谷歌公布模型训练框架 ASPIREASPIRE フレームワーク トレーニングにより、微調整後に、たとえ小規模なモデルであっても、大規模な言語モデルの出力精度を大幅に向上させることができると結論付けました。 " 予報###。

以上がGoogle、AIが出力精度を独立して判断できるモデルトレーニングフレームワーク「ASPIRE」をリリースの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
エージェントラグシステムはどのようにテクノロジーを変換しますか?エージェントラグシステムはどのようにテクノロジーを変換しますか?Apr 12, 2025 am 09:21 AM

導入 人工知能は新しい時代に入りました。モデルが事前定義されたルールに基づいて単に情報を出力する時代は終わりました。今日のAIの最先端のアプローチは、Ragを中心に展開しています(検索装備

自動生成クエリのSQLアシスタント自動生成クエリのSQLアシスタントApr 12, 2025 am 09:13 AM

複雑なSQLクエリを書いたり、スプレッドシートを並べ替えたりせずに、データベースと話をしたり、単純な言語で質問したり、即座に答えを得たりすることを望んだことがありますか? LangchainのSQL Toolkit、Groq a

AIインデックス2025を読む:AIはあなたの友人、敵、または副操縦士ですか?AIインデックス2025を読む:AIはあなたの友人、敵、または副操縦士ですか?Apr 11, 2025 pm 12:13 PM

スタンフォード大学ヒト指向の人工知能研究所によってリリースされた2025年の人工知能インデックスレポートは、進行中の人工知能革命の良い概要を提供します。 4つの単純な概念で解釈しましょう:認知(何が起こっているのかを理解する)、感謝(利益を見る)、受け入れ(顔の課題)、責任(責任を見つける)。 認知:人工知能はどこにでもあり、急速に発展しています 私たちは、人工知能がどれほど速く発展し、広がっているかを強く認識する必要があります。人工知能システムは絶えず改善されており、数学と複雑な思考テストで優れた結果を達成しており、わずか1年前にこれらのテストで惨めに失敗しました。 2023年以来、複雑なコーディングの問題や大学院レベルの科学的問題を解決することを想像してみてください

Meta Llama 3.2を始めましょう - 分析VidhyaMeta Llama 3.2を始めましょう - 分析VidhyaApr 11, 2025 pm 12:04 PM

メタのラマ3.2:マルチモーダルとモバイルAIの前進 メタは最近、ラマ3.2を発表しました。これは、モバイルデバイス向けに最適化された強力なビジョン機能と軽量テキストモデルを特徴とするAIの大幅な進歩です。 成功に基づいてo

AVバイト:Meta' s llama 3.2、GoogleのGemini 1.5などAVバイト:Meta' s llama 3.2、GoogleのGemini 1.5などApr 11, 2025 pm 12:01 PM

今週のAIの風景:進歩、倫理的考慮、規制の議論の旋風。 Openai、Google、Meta、Microsoftのような主要なプレーヤーは、画期的な新しいモデルからLEの重要な変化まで、アップデートの急流を解き放ちました

マシンと話すための人的費用:チャットボットは本当に気にすることができますか?マシンと話すための人的費用:チャットボットは本当に気にすることができますか?Apr 11, 2025 pm 12:00 PM

つながりの慰めの幻想:私たちはAIとの関係において本当に繁栄していますか? この質問は、MIT Media Labの「AI(AHA)で人間を進める」シンポジウムの楽観的なトーンに挑戦しました。イベントではCondedgを紹介している間

PythonのScipy Libraryの理解PythonのScipy Libraryの理解Apr 11, 2025 am 11:57 AM

導入 あなたが科学者またはエンジニアで複雑な問題に取り組んでいると想像してください - 微分方程式、最適化の課題、またはフーリエ分析。 Pythonの使いやすさとグラフィックスの機能は魅力的ですが、これらのタスクは強力なツールを必要とします

ラマ3.2を実行する3つの方法-Analytics Vidhyaラマ3.2を実行する3つの方法-Analytics VidhyaApr 11, 2025 am 11:56 AM

メタのラマ3.2:マルチモーダルAIパワーハウス Metaの最新のマルチモーダルモデルであるLlama 3.2は、AIの大幅な進歩を表しており、言語理解の向上、精度の向上、および優れたテキスト生成機能を誇っています。 その能力t

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。