検索
ホームページテクノロジー周辺機器AIゼロサンプルテキスト分類の実装方法と関連技術の進化

ゼロサンプルテキスト分類の実装方法と関連技術の進化

ゼロサンプル ドキュメント分類とは、特定のカテゴリのトレーニング サンプルを参照せずに、そのカテゴリのドキュメントを分類することを指します。多くの場合、考えられるすべてのカテゴリのサンプルを取得できないため、この問題は実際のアプリケーションでは非常に一般的です。したがって、ゼロショット文書分類は非常に重要なテキスト分類問題です。 ゼロショット文書分類では、既存のトレーニング サンプルとカテゴリの意味情報を使用して分類できます。一般的なアプローチは、ワード ベクトルを使用してドキュメントとカテゴリを表し、ドキュメントとカテゴリ間の類似性を計算して分類を実行することです。もう 1 つのアプローチは、ナレッジ グラフまたは外部ナレッジ ベースを使用して、ドキュメントとカテゴリをナレッジ グラフ内のエンティティまたは概念にマッピングし、グラフ上の関係を通じてそれらを分類することです。 ゼロショット文書分類は、多くの分野で幅広い用途に使用できます。情報検索の分野では、ユーザーが関連文書を迅速に見つけるのに役立ちます

ゼロショット文書分類とは何ですか?

従来のテキスト分類タスクでは、通常、カテゴリでラベル付けされた一連のトレーニング サンプルを使用して分類器をトレーニングし、その後、その分類器を使用して新しいドキュメントを分類します。ただし、ゼロショット文書分類では、既知のクラスのトレーニング サンプルは利用できません。したがって、未知のカテゴリの文書を分類するには、他の方法を採用する必要があります。この場合、既知のカテゴリのサンプルと未知のカテゴリのサンプルを関連付けることによって分類を実行するゼロショット学習手法を使用することができます。もう 1 つのアプローチは、既存のトレーニング モデルと知識を使用して未知のカテゴリのドキュメントを分類する転移学習を使用することです。さらに、生成モデルを使用して分類用の新しいサンプルを生成することも検討できます。要約すると、ゼロショット文書分類は、既知のカテゴリのトレーニング サンプルがない状況に対処するために他の方法の助けを必要とする困難なタスクです。

#ゼロサンプル文書分類方法

1. Word ベクトルベースの方法

ベースon ワード ベクトル法は、一般的に使用されるゼロショット ドキュメント分類法です。その基本的な考え方は、既知のカテゴリのトレーニング サンプルを使用して単語ベクトル空間を学習し、この空間を使用して未知のカテゴリのドキュメントを表すことです。具体的には、各文書を単語ベクトルから構成されるベクトルとして表すことができます。次に、既知のカテゴリのトレーニング サンプル内の単語ベクトルを使用して、分類対象の文書内の単語ベクトルと比較して、そのカテゴリを決定できます。通常、コサイン類似度などの類似性尺度を使用して、ドキュメント間の類似性の程度を測定できます。分類対象の文書が特定のカテゴリのトレーニング サンプルとの類似性が高い場合、そのカテゴリに分類できます。このようにして、ワード ベクトル ベースの方法により、未知のカテゴリのドキュメントの分類を実現できます。

ワード ベクトル ベースの手法にはさまざまなバリエーションがあり、最も一般的なものは事前トレーニングされたワード ベクトルに基づいています。この方法では、Word2Vec や GloVe などの事前トレーニング済みの単語ベクトルを使用して、単語ベクトル空間を学習します。次に、この空間を使用してドキュメントを表現し、既知のカテゴリのトレーニング サンプルを使用して分類器をトレーニングできます。未知のカテゴリのドキュメントの場合、その単語ベクトル表現と既知のカテゴリのトレーニング サンプルの単語ベクトル表現を比較することで、そのカテゴリを決定できます。

2. ナレッジ グラフ ベースの方法

ナレッジ グラフ ベースの方法は、一般的に使用されるもう 1 つのゼロサンプル ドキュメント分類方法です。この方法の基本的な考え方は、既知のカテゴリのトレーニング サンプルの意味情報を使用してナレッジ グラフを構築し、このナレッジ グラフを使用してドキュメントを表現することです。未知のカテゴリのドキュメントについては、ナレッジ グラフ内のノードとして表現し、グラフ内の既知のカテゴリのノードを分類に使用できます。

ナレッジグラフに基づく方法は、トレーニングサンプルの意味分析と知識抽出が必要なため、より複雑です。ただし、ドキュメントの高レベルの意味情報を取得できるため、場合によってはより良い分類結果が得られます。

3. メタ学習ベースの手法

メタ学習ベースの手法は、最近提案されたゼロショット文書分類手法です。この方法の基本的な考え方は、既知のカテゴリのトレーニング サンプルを使用して、メタ特徴 (ドキュメントの長さ、単語の頻度分布など) に基づいてドキュメントのカテゴリを予測できるメタ分類子をトレーニングすることです。 。)。次に、未知のカテゴリのドキュメントについては、メタ分類子を使用してそのカテゴリを予測できます。

メタ学習ベースの手法では、大量のトレーニング サンプルとコンピューティング リソースが必要ですが、未知のカテゴリのドキュメントを正確に分類できます。

#ゼロショット文書分類のアプリケーション

ゼロショット文書分類は、自然言語処理の分野で幅広い用途があります。例:

1. 多言語テキスト分類

##複数言語の場合、すべてのトレーニング サンプルを取得できない場合があります。言語。したがって、ゼロショット文書分類を使用して、未知の言語のテキストを分類できます。

2. ニュースの分類

ニュース分類では、毎日さまざまなニューストピックが登場し、すべてのトピックのトレーニングサンプルを入手することは困難です。したがって、ゼロショット文書分類を使用して、新しいトピックを分類できます。

3. 商品分類

電子商取引の分野では、新しい商品カテゴリーが登場することがありますが、すべてを入手するのは困難です。カテゴリ トレーニング サンプル。したがって、ゼロショット文書分類を使用して、新しい製品カテゴリを分類できます。

以上がゼロサンプルテキスト分類の実装方法と関連技術の進化の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は网易伏羲で複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
外挿の包括的なガイド外挿の包括的なガイドApr 15, 2025 am 11:38 AM

導入 数週間で作物の進行を毎日観察する農民がいるとします。彼は成長率を見て、さらに数週間で彼の植物がどれほど背が高くなるかについて熟考し始めます。 thから

ソフトAIの台頭とそれが今日のビジネスにとって何を意味するかソフトAIの台頭とそれが今日のビジネスにとって何を意味するかApr 15, 2025 am 11:36 AM

ソフトAIは、おおよその推論、パターン認識、柔軟な意思決定を使用して特定の狭いタスクを実行するように設計されたAIシステムとして定義されていますが、曖昧さを受け入れることにより、人間のような思考を模倣しようとします。 しかし、これはBusineにとって何を意味しますか

AIフロンティア向けの進化するセキュリティフレームワークAIフロンティア向けの進化するセキュリティフレームワークApr 15, 2025 am 11:34 AM

答えは明確です。クラウドコンピューティングには、クラウドネイティブセキュリティツールへの移行が必要であるため、AIはAIの独自のニーズに特化した新しい種類のセキュリティソリューションを要求します。 クラウドコンピューティングとセキュリティレッスンの台頭 で

3つの方法生成AIは起業家を増幅します:平均に注意してください!3つの方法生成AIは起業家を増幅します:平均に注意してください!Apr 15, 2025 am 11:33 AM

起業家とAIと生成AIを使用して、ビジネスを改善します。同時に、すべてのテクノロジーと同様に、生成的AIが増幅器であることを覚えておくことが重要です。厳密な2024年の研究o

Andrew Ngによる埋め込みモデルに関する新しいショートコースAndrew Ngによる埋め込みモデルに関する新しいショートコースApr 15, 2025 am 11:32 AM

埋め込みモデルのパワーのロックを解除する:Andrew Ngの新しいコースに深く飛び込む マシンがあなたの質問を完全に正確に理解し、応答する未来を想像してください。 これはサイエンスフィクションではありません。 AIの進歩のおかげで、それはRになりつつあります

大規模な言語モデル(LLMS)の幻覚は避けられませんか?大規模な言語モデル(LLMS)の幻覚は避けられませんか?Apr 15, 2025 am 11:31 AM

大規模な言語モデル(LLM)と幻覚の避けられない問題 ChatGpt、Claude、GeminiなどのAIモデルを使用した可能性があります。 これらはすべて、大規模なテキストデータセットでトレーニングされた大規模な言語モデル(LLMS)、強力なAIシステムの例です。

60%の問題 -  AI検索がトラフィックを排出す​​る方法60%の問題 - AI検索がトラフィックを排出す​​る方法Apr 15, 2025 am 11:28 AM

最近の研究では、AIの概要により、産業と検索の種類に基づいて、オーガニックトラフィックがなんと15〜64%減少する可能性があることが示されています。この根本的な変化により、マーケティング担当者はデジタルの可視性に関する戦略全体を再考することになっています。 新しい

AI R&Dの中心に人間が繁栄するようにするMITメディアラボAI R&Dの中心に人間が繁栄するようにするMITメディアラボApr 15, 2025 am 11:26 AM

Elon UniversityがDigital Future Centerを想像している最近のレポートは、300人近くのグローバルテクノロジーの専門家を調査しました。結果のレポート「2035年に人間である」は、ほとんどがTを超えるAIシステムの採用を深めることを懸念していると結論付けました。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。