変分推論と EM アルゴリズムは、一般的に使用される確率的グラフィカル モデル推論手法であり、どちらも観測データから隠れた変数の分布を推論するために使用されます。これらは実際のアプリケーションで広く使用されており、複雑な問題を処理できます。
1. 変分推論
変分推論は、問題を解決する近似分布を見つける方法に変換する近似推論方法です。通常、この近似分布はガウス分布や指数分布などの単純な分布です。変分推論では、近似分布と真の分布との間の距離を最小化することによって、最適な近似分布を見つけます。この距離は通常、KL 発散を使用して測定されます。したがって、変分推論の目標は、KL 発散を最小限に抑えて、近似分布と真の分布の差を減らすことです。
具体的には、変分推論のプロセスは次の手順で完了します:
1. モデルの事前分布と類似性を決定します。関数。
2. 近似分布として単純分布を選択し、近似分布のパラメータを決定します。
3. KL 発散を使用して、近似分布と真の分布の間の距離を測定し、それを最小化します。
4. 近似分布のパラメーターを繰り返し最適化することで、KL の発散を最小限に抑えます。
5. 最後に、得られた近似分布を使用して、隠れ変数の分布を推測できます。
変分推論の利点は、大規模なデータセットと複雑なモデルを処理できることです。さらに、欠損データが存在する場合でも推論を行うことができるため、不完全なデータを処理できます。ただし、このアプローチの欠点は、大域的な最適解ではなく局所的な最適解に収束する可能性があることです。さらに、近似分布の選択は任意であるため、不適切な近似分布を選択すると、不正確な推論結果が得られる可能性があります。
2. EM アルゴリズム
EM アルゴリズムは、隠れ変数の存在下で確率モデルを分析するために使用される反復アルゴリズムです。パラメータ推定。 EM アルゴリズムの主なアイデアは、E ステップと M ステップの 2 つのステップを交互に実行することで、尤度関数の下限を最大化することです。
具体的には、EM アルゴリズムのプロセスは次のとおりです:
1. モデルのパラメーターを初期化します。
2. ステップ E: 隠れ変数の事後分布、つまり、現在のパラメーターが与えられた隠れ変数の条件付き分布を計算します。
3. ステップ M: 尤度関数の下限を最大化します、つまり、ステップ E で計算された事後分布の下でモデル パラメーターを更新します。
4. 収束するまでステップ E と M を繰り返します。
EM アルゴリズムの利点は、隠れた変数の存在下でパラメーター推定を実行でき、不完全なデータを処理できることです。さらに、EM アルゴリズムは尤度関数の下限を最大化することで最適化するため、反復ごとに尤度関数が増加することが保証されます。ただし、EM アルゴリズムの欠点は、大域的な最適解ではなく局所的な最適解に収束する可能性があることです。さらに、EM アルゴリズムは初期パラメータの選択に非常に敏感であるため、不適切な初期パラメータを選択すると、アルゴリズムが局所的な最適解に陥る可能性があります。
全体として、変分推論と EM アルゴリズムは、2 つの重要な確率的グラフィカル モデル推論手法です。どちらも多くの複雑な現実世界の問題を処理できますが、それぞれに独自の長所と短所があります。実際のアプリケーションでは、正確で信頼性の高い推論結果を得るために、特定の問題とデータセットに基づいて適切な方法を選択し、合理的なパラメータ選択と最適化戦略を実行する必要があります。
以上が変分推論および期待値最大化アルゴリズムの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

導入 数週間で作物の進行を毎日観察する農民がいるとします。彼は成長率を見て、さらに数週間で彼の植物がどれほど背が高くなるかについて熟考し始めます。 thから

ソフトAIは、おおよその推論、パターン認識、柔軟な意思決定を使用して特定の狭いタスクを実行するように設計されたAIシステムとして定義されていますが、曖昧さを受け入れることにより、人間のような思考を模倣しようとします。 しかし、これはBusineにとって何を意味しますか

答えは明確です。クラウドコンピューティングには、クラウドネイティブセキュリティツールへの移行が必要であるため、AIはAIの独自のニーズに特化した新しい種類のセキュリティソリューションを要求します。 クラウドコンピューティングとセキュリティレッスンの台頭 で

起業家とAIと生成AIを使用して、ビジネスを改善します。同時に、すべてのテクノロジーと同様に、生成的AIが増幅器であることを覚えておくことが重要です。厳密な2024年の研究o

埋め込みモデルのパワーのロックを解除する:Andrew Ngの新しいコースに深く飛び込む マシンがあなたの質問を完全に正確に理解し、応答する未来を想像してください。 これはサイエンスフィクションではありません。 AIの進歩のおかげで、それはRになりつつあります

大規模な言語モデル(LLM)と幻覚の避けられない問題 ChatGpt、Claude、GeminiなどのAIモデルを使用した可能性があります。 これらはすべて、大規模なテキストデータセットでトレーニングされた大規模な言語モデル(LLMS)、強力なAIシステムの例です。

最近の研究では、AIの概要により、産業と検索の種類に基づいて、オーガニックトラフィックがなんと15〜64%減少する可能性があることが示されています。この根本的な変化により、マーケティング担当者はデジタルの可視性に関する戦略全体を再考することになっています。 新しい

Elon UniversityがDigital Future Centerを想像している最近のレポートは、300人近くのグローバルテクノロジーの専門家を調査しました。結果のレポート「2035年に人間である」は、ほとんどがTを超えるAIシステムの採用を深めることを懸念していると結論付けました。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

ドリームウィーバー CS6
ビジュアル Web 開発ツール

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません
