検索
ホームページテクノロジー周辺機器AI特異スペクトル解析による特徴抽出方法

特異スペクトル解析による特徴抽出方法

Jan 23, 2024 pm 04:18 PM
特徴エンジニアリング

特異スペクトル解析による特徴抽出方法

特異スペクトル解析 (SSA) は、線形代数に基づく信号解析テクノロジです。信号のノイズ除去、予測、特徴抽出などの分野に適用できます。他の方法と比較すると、SSA はノンパラメトリックな方法であるため、信号に関する仮定を必要としません。これにより、汎用性と柔軟性が高まります。 SSA の利点は、信号をコンポーネントに分解することで信号内の特徴を抽出できることです。これらのコンポーネントは、信号の傾向、周期性、ノイズなどの情報を表すことができます。これらのコンポーネントを分析することで、信号をよりよく理解して処理できるようになります。さらに、SSA は、過去の信号データに基づいて将来の信号の変化を予測することにより、信号の予測にも使用できます。つまり、SSA は強力な信号分析テクノロジーです。

SSA の基本的な考え方は、元の信号をいくつかのコンポーネント (サブシーケンス) に分解することであり、各コンポーネントはいくつかのコンポーネントで構成されています。基底関数の線形結合によって得られます。これらの基底関数は、元の信号の一部 (ウィンドウ) から構築されたローカル基底関数です。これらの基底関数に対して特異値分解 (SVD) を実行することで、特異値と特異ベクトルのセットを取得できます。特異値は基底関数のエネルギーを表し、特異ベクトルは基底関数の形状を表します。

SSA では、特徴抽出プロセスは最も代表的なコンポーネントを選択することです。一般に、信号を分解し、信号特性を最もよく表すコンポーネントを選択して分析します。これらのコンポーネントには通常、トレンド、サイクル、確率的コンポーネントが含まれます。トレンド コンポーネントは全体的なトレンドを反映し、周期コンポーネントは周期的な変化を反映し、確率コンポーネントはノイズとランダムな変化を表します。

SSA の特徴抽出方法には、主に次の手順が含まれます:

信号分解では、元の信号を複数の成分に分割します。基底関数の線形結合。正確で信頼性の高い分解結果を保証するには、適切なウィンドウ サイズとコンポーネントの数を選択する必要があります。

コンポーネントの選択: コンポーネントのエネルギーと形状に基づいて、分析用の信号特性を表すことができるコンポーネントを選択します。通常、トレンド成分、周期成分、ランダム成分が選択されます。

特徴抽出: 選択したコンポーネントから特徴を抽出します。たとえば、コンポーネントの平均、分散、ピーク、谷などの統計の計算、または周期、周波数、振幅などの計算などです。コンポーネントの特性。

特徴分析: 特徴間の相関関係や統計分布などの計算など、抽出された特徴を分析します。特徴の分析を通じて、信号のサイクルや傾向など、信号のいくつかの重要な特徴を明らかにすることができます。

SSA 特徴抽出方法には次の利点があります。

1.SSA はノンパラメトリックな方法であり、次のような仮定を必要としません。信号なので、強い汎用性と柔軟性を持っています。

2.SSA は信号を複数のコンポーネントに分解でき、各コンポーネントには明確な物理的意味があるため、特徴の抽出と分析が容易になります。

3.SSA は、信号内のノイズと干渉を効果的に除去し、信号の真の特性を抽出できます。

4.SSA は比較的計算速度が速く、大規模なデータを処理できます。

つまり、特異スペクトル解析に基づく特徴抽出手法は、信号のノイズ除去、予測、特徴抽出などの分野で使用できる有効な信号解析手法です。実際のアプリケーションでは、特定の問題に応じて適切なウィンドウ サイズとコンポーネントの数を選択し、それらを他のアルゴリズムと組み合わせて分析および処理する必要があります。

以上が特異スペクトル解析による特徴抽出方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は网易伏羲で複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
PIXTRAL 12B対QWEN2-VL-72BPIXTRAL 12B対QWEN2-VL-72BApr 12, 2025 am 09:52 AM

導入 AI革命は、テキストからイメージのモデルが芸術、デザイン、テクノロジーの交差点を再定義している創造性の新しい時代を生み出しました。 Pixtral 12bおよびqwen2-vl-72bは、2つの先駆的な力のドリビンです

Paperqaとは何ですか、そしてそれは科学研究をどのように支援しますか?Paperqaとは何ですか、そしてそれは科学研究をどのように支援しますか?Apr 12, 2025 am 09:51 AM

導入 AIの進歩により、科学的研究では大きな変革が見られました。さまざまなテクノロジーやセクターで毎年何百万もの論文が掲載されています。しかし、この情報の海をretrに移動します

Datagemma:幻覚に対するLLMの接地 - 分析VidhyaDatagemma:幻覚に対するLLMの接地 - 分析VidhyaApr 12, 2025 am 09:46 AM

導入 大規模な言語モデルは、産業を急速に変革しています。Todayは、銀行業務におけるパーソナライズされたカスタマーサービスからグローバルコミュニケーションのリアルタイム言語翻訳まで、あらゆるものを動かしています。彼らはクエストに答えることができます

CrewaiとOllamaでマルチエージェントシステムを構築する方法は?CrewaiとOllamaでマルチエージェントシステムを構築する方法は?Apr 12, 2025 am 09:44 AM

導入 APIにお金を費やしたくないのですか、それともプライバシーを心配していますか?それとも、LLMSをローカルに実行したいだけですか?心配しないで;このガイドは、ローカルLLMSを使用してエージェントとマルチエージェントフレームワークを構築するのに役立ちます

AVバイト:Openai' S O1モデル、Apple'の視覚的なAIなど - 分析VidhyaAVバイト:Openai' S O1モデル、Apple'の視覚的なAIなど - 分析VidhyaApr 12, 2025 am 09:38 AM

導入 今週は、人工知能の世界(AI)の主要な更新が詰め込まれています。 OpenaiのO1モデルから、高度な推論の紹介からAppleの画期的な視覚知能技術、Techまで

生産グレードのエージェントRAGパイプラインを監視する方法は?生産グレードのエージェントRAGパイプラインを監視する方法は?Apr 12, 2025 am 09:34 AM

導入 2022年、CHATGPTの立ち上げにより、ハイテク産業と非テクノロジーの両方の業界の両方に革命をもたらし、個人や組織にAIを生成しました。 2023年を通じて、大規模な言語モードの活用に集中しました

Star Schemaを使用してデータウェアハウスを最適化する方法は?Star Schemaを使用してデータウェアハウスを最適化する方法は?Apr 12, 2025 am 09:33 AM

Star Schemaは、データウェアハウジングとビジネスインテリジェンスで使用される効率的なデータベース設計です。データを整理し、周囲の寸法テーブルにリンクされた中央のファクトテーブルになります。この星のような構造は、複雑なqを簡素化します

マルチモーダルRAGシステムの構築に関する包括的なガイドマルチモーダルRAGシステムの構築に関する包括的なガイドApr 12, 2025 am 09:29 AM

RAGシステムとしてよく知られている検索拡張生成システムは、高価な微調整の手間なしでカスタムエンタープライズデータに関する質問に答えるインテリジェントAIアシスタントを構築するための事実上の標準となっています

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。