ShuffleNet V2 は、微調整および設計された軽量のニューラル ネットワークで、主に画像分類やターゲット検出などのタスクに使用されます。効率的なコンピューティング、高精度、軽量設計が特徴です。 ShuffleNet V2 の目標は、高精度を維持しながら効率的な計算結果を提供することです。 このネットワークの中心的なアイデアは、特別なチャネル再配置形式を通じて効率的な計算を実現することです。 ShuffleNet V2 は、ネットワーク層の設計に軽量モジュールを導入することで、リソースに制約のあるデバイス上で高速な推論とトレーニングを実現できます。このチャネル再配置方法により、より多くの並列コンピューティング操作がネットワークに導入されるため、コンピューティングとストレージの要件が軽減されます。 ShuffleNet V2 は、入力チャネルをグループ化し、再配置することで、異なるグループ間で情報をやり取りできるようにし、それによってネットワークの表現力を強化します。この再配置方法により、高精度を維持しながら、モデルのパラメータと計算の数が効果的に削減されます。 つまり、ShuffleNet V2 は、効率的な計算、高精度、軽量設計を備えたニューラル ネットワークであり、その特殊なチャネル再配置形式により、リソースに制約のあるデバイス上での高速な推論とトレーニングが可能になります。
ShuffleNet V2 の主な構造は、ShuffleNet V2 ユニットと ShuffleNet V2 ブロックの 2 つのモジュールで構成されます。
ShuffleNet V2 ユニットは、ShuffleNet V2 の基本的な構成要素です。 1x1 畳み込み層、チャネル再配置層、3x3 畳み込み層で構成されます。このユニットは、異なるレベル間の情報交換の効率を高めるように設計されています。 ShuffleNet V2 ブロックは複数の ShuffleNet V2 ユニットで構成され、特殊なチャネル再配置形式により効率的な情報転送を実現します。中心となるアイデアは、入力特徴マップを 2 つの部分に分割することです。 1 つの部分では特徴変換のために 1x1 の畳み込みが行われ、その後、もう 1 つの部分でチャネルの再配置が行われます。チャネル再配置後の特徴マップは、特徴抽出のために 3x3 の畳み込みを受けます。最後に、2 つの部分の機能マップが ShuffleNet V2 ブロックの出力として結合されます。 この設計により、モデルの軽量化を維持しながら、モデルの表現力と精度を向上させることができます。効果的な情報交換と特徴抽出を通じて、ShuffleNet V2 ブロックはディープ ニューラル ネットワークでより優れたパフォーマンスを達成できます。
ShuffleNet V2 の中心原理はチャネルの再配置です。従来の畳み込みニューラル ネットワークは通常、より多くの特徴情報を抽出するために、より大きな畳み込みカーネルとより深いネットワーク構造を使用します。しかし、この方法ではモデルのパラメータや計算量が増加するため、リソースに制約のあるデバイスでは効率的な推論や学習を実現することが困難になります。この問題を解決するために、ShuffleNet V2 はチャネル再配置戦略を採用しています。 チャネル再配置のプロセスは次のとおりです。まず、入力特徴マップが 2 つの部分に分割されます。その一部は 1x1 の畳み込み変換を受け、他の部分はチャネルの再配置を受けます。チャネルの再配置は、特徴マップのチャネルをグループ化し、各グループ内でチャネルを再配置することによって情報交換の目的を達成します。 チャネル再配置の利点は、異なる層間の情報転送の効率を向上できることです。チャネルを再配置することにより、さまざまなレイヤーの特徴マップが互いにより適切に相互作用できるようになり、それによってモデルのパフォーマンスが向上します。さらに、チャネルの再配置により、モデルのパラメータと計算の数も削減できます。チャネルをグループ化すると、各グループ内のチャネルの数を減らすことができ、モデルのパラメータを減らすことができます。同時に、グループ内の特徴マップが計算を共有できるため、チャネルの再配置により計算量も削減できます。 つまり、ShuffleNet V2 はチャネルの再配置を使用してモデルのパフォーマンスを向上させると同時に、モデルのパラメーターと計算の数を減らし、それによって効率的な推論とトレーニングを実現します。
ShuffleNet V2 は軽量設計を採用しており、モバイル デバイスや組み込みデバイスなどのリソースに制約のある環境で推論とトレーニングを効率的に実行できます。同時に、ShuffleNet V2 は、高い精度を維持しながら、モデル サイズが小さく、計算負荷が低いという利点があります。したがって、ShuffleNet V2 は、自動運転、インテリジェント セキュリティ、その他の分野など、迅速な対応が必要なシナリオで重要な役割を果たすことができます。
以上がShuffleNet V2 ネットワークの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Metaは、NVIDIA、IBM、Dellなどのパートナーと協力して、Llama Stackのエンタープライズレベルの展開統合を拡大しました。セキュリティの観点から、MetaはLlama Guard 4、Llamafirewall、Cyberseceval 4などの新しいツールを立ち上げ、AIセキュリティを強化するためにLlama Defendersプログラムを開始しました。さらに、METAは、公共サービス、ヘルスケア、教育の改善に取り組んでいる新興企業を含む、Llama Impact Grantsの150万ドルを10のグローバル機関に分配しています。 Llama 4を搭載した新しいメタAIアプリケーションは、メタAIとして考案されました

人間との相互作用の先駆者であるJoi Aiは、これらの進化する関係を説明するために「AI-lationships」という用語を導入しました。 Joi Aiの関係療法士であるJaime Bronsteinは、これらが人間cを置き換えることを意図していないことを明確にしています

オンライン詐欺とボット攻撃は、企業にとって大きな課題をもたらします。 小売業者は、ボットの買いだめ製品、銀行の戦闘口座の買収、ソーシャルメディアプラットフォームと戦い、なりすまし者と闘っています。 AIの台頭は、この問題を悪化させます

AIエージェントは、マーケティングに革命をもたらす態勢が整っており、以前の技術的変化の影響を上回る可能性があります。 これらのエージェントは、生成AIの大幅な進歩を表し、ChatGPTのような情報を処理するだけでなく、Actioも取る

重要なNBAゲーム4の決定に対するAIの影響 2つの重要なゲーム4 NBAマッチアップは、司会におけるAIのゲームを変える役割を紹介しました。 最初に、デンバーのニコラ・ジョキッチの逃した3ポインターは、アーロン・ゴードンの最後の2秒の路地につながりました。 ソニーのホー

伝統的に、再生医療の専門知識を拡大すると、世界的に大規模な旅行、実践的なトレーニング、長年のメンターシップが必要でした。 現在、AIはこの風景を変えており、地理的な制限を克服し、ENを通じて進歩を加速しています

Intelは、製造プロセスを主要な位置に戻すように取り組んでいますが、Fab Semiconductorの顧客を引き付けてFabでチップを作成しようとしています。この目的のために、Intelは、そのプロセスの競争力を証明するだけでなく、パートナーが馴染みのある成熟したワークフローでチップを製造できることを実証するために、業界へのより多くの信頼を築かなければなりません。今日私が聞いたことはすべて、インテルがこの目標に向かっていると信じています。 新しいCEOのタンリバイの基調講演がその日をキックオフしました。タンリバイは簡単で簡潔です。彼は、IntelのFoundry Servicesにおけるいくつかの課題と、これらの課題に対処し、将来のIntelのFoundry Servicesの成功したルートを計画するために企業が行った対策を概説しています。 Tan Libaiは、IntelのOEMサービスが顧客をより多くするために実装されているプロセスについて話しました

AIのリスクを取り巻く増大する懸念に対処するために、グローバルな専門家保険会社であるChaucer GroupとArmilla AIは、新しいサードパーティの責任(TPL)保険商品を導入するために力を合わせました。 このポリシーは、企業を守ります


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

SublimeText3 中国語版
中国語版、とても使いやすい

Dreamweaver Mac版
ビジュアル Web 開発ツール

ホットトピック









