チホノフ正則化は、リッジ回帰または L2 正則化とも呼ばれ、線形回帰に使用される正則化手法です。 L2 ノルム ペナルティ項をモデルの目的関数に追加することで、モデルの複雑さと一般化能力を制御します。このペナルティ項は、過剰な重みを回避するために二乗和によってモデルの重みにペナルティを課し、それによって過剰適合の問題を軽減します。この方法では、損失関数に正則化項を導入し、正則化係数を調整してモデルのフィッティング能力と一般化能力のバランスをとります。チホノフ正則化は実際のアプリケーションに幅広く応用でき、モデルのパフォーマンスと安定性を効果的に向上させることができます。
正則化する前、線形回帰の目的関数は次のように表すことができます:
J(w)=\frac{1}{2m }\sum_{i=1}^{m}(h_w(x^{(i)})-y^{(i)})^2
この目的関数ではw はモデルの重みベクトル、h_w(x^{(i)}) は i 番目のサンプル x^{(i)}、y^{(i)} に対するモデルの予測結果であることがわかります。は真のラベル、m はサンプル数です。この目的関数を最適化するために、勾配降下法などの手法がよく使用されます。これらの手法では、目的関数の勾配を計算し、重みベクトル w を更新することで目的関数の値を徐々に減らし、モデルの予測結果を実際のラベルに近づけます。このように、目的関数を最適化することでモデルのパフォーマンスを向上させることができます。
チホノフ正則化では、目的関数は次のようになります:
J(w)=\frac{1}{ 2m}\sum_{i =1}^{m}(h_w(x^{(i)})-y^{(i)})^2 \frac{\lambda}{2}||w||_2 ^2
#このうち、\lambda は正則化パラメータであり、ペナルティ項の強度を制御するために使用されます。 ||w||_2^2 は重みベクトルの L2 ノルムを表し、すべての重みの二乗の合計です。このペナルティ項は、重みの値が大きくなりすぎないように制限し、それによってモデルの過剰適合を防ぎます。 実際のアプリケーションでは、通常、正則化パラメーター \lambda の値は、相互検証やその他の方法によって決定する必要があります。 \lambda が小さすぎると、正則化の効果が弱くなり、モデルは依然として過学習する傾向があります。\lambda が大きすぎると、ペナルティ項が元の目的関数を圧倒し、モデルが過小学習になってしまいます。 チホノフ正則化には、他にもいくつかの特徴と用途があります。たとえば、関連する特徴の重みを互いに打ち消すことができるため、特徴間の相関関係をより適切に処理できます。また、重要でない特徴にペナルティを与えることで特徴の数を減らすことができるため、高次元データの処理にも使用できます。 以下は、Tikhonov 正則化を使用した線形回帰の例です。 2 つの特徴と 1 つのラベルを含むデータ セットがあるとします。これを実現するには、Python の Scikit-learn ライブラリを使用します。from sklearn.linear_model import Ridge from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_regression # 生成数据集 X, y = make_regression(n_samples=100, n_features=2, noise=0.5, random_state=42) # 数据归一化 scaler = StandardScaler() X = scaler.fit_transform(X) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 构建模型 ridge = Ridge(alpha=1.0) # alpha为正则化参数 # 模型训练 ridge.fit(X_train, y_train) # 模型评估 print("Train score:", ridge.score(X_train, y_train)) print("Test score:", ridge.score(X_test, y_test))この例では、Scikit-learn ライブラリの make_regression 関数を使用して、2 つの特徴とラベルを含むデータセットを生成します。まずデータを正規化し、次に train_test_split 関数を使用してデータ セットをトレーニング セットとテスト セットに分割しました。次に、Ridge 関数を使用して、アルファ パラメーターが正則化パラメーターである Tikhonov 正則化線形回帰モデルを構築しました。最後に、fit 関数を使用してモデルをトレーニングし、score 関数を使用してトレーニング セットとテスト セットの R2 スコアをそれぞれ計算しました。 正則化パラメータ alpha の値は、相互検証やその他の方法によって決定する必要があることに注意してください。この例では、デフォルト値の alpha=1.0 を使用しました。アルファが小さすぎる場合、モデルは満足のいくパフォーマンスを発揮しない可能性があり、アルファが大きすぎる場合、モデルは適合不足になる可能性があります。
以上がチホノフ正則化の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

多元线性回归是最常见的线性回归形式,用于描述单个响应变量Y如何与多个预测变量呈现线性关系。可以使用多重回归的应用示例:房子的售价可能受到位置、卧室和浴室数量、建造年份、地块面积等因素的影响。2、孩子的身高取决于母亲的身高、父亲的身高、营养和环境因素。多元线性回归模型参数考虑一个具有k个独立预测变量x1、x2……、xk和一个响应变量y的多元线性回归模型。假设我们对k+1个变量有n个观测值,并且n的变量应该大于k。最小二乘回归的基本目标是将超平面拟合到(k+1)维空间中,以最小化残差平方和。在对模型

Python中的线性回归模型详解线性回归是一种经典的统计模型和机器学习算法。它被广泛应用于预测和建模的领域,如股票市场预测、天气预测、房价预测等。Python作为一种高效的编程语言,提供了丰富的机器学习库,其中就包括线性回归模型。本文将详细介绍Python中的线性回归模型,包括模型原理、应用场景和代码实现等。线性回归原理线性回归模型是建立在变量之间存在线性关

吉洪诺夫正则化,又称为岭回归或L2正则化,是一种用于线性回归的正则化方法。它通过在模型的目标函数中添加一个L2范数惩罚项来控制模型的复杂度和泛化能力。该惩罚项对模型的权重进行平方和的惩罚,以避免权重过大,从而减轻过拟合问题。这种方法通过在损失函数中引入正则化项,通过调整正则化系数来平衡模型的拟合能力和泛化能力。吉洪诺夫正则化在实际应用中具有广泛的应用,可以有效地改善模型的性能和稳定性。在正则化之前,线性回归的目标函数可以表示为:J(w)=\frac{1}{2m}\sum_{i=1}^{m}(h_

1.线性回归线性回归(Linear Regression)可能是最流行的机器学习算法。线性回归就是要找一条直线,并且让这条直线尽可能地拟合散点图中的数据点。它试图通过将直线方程与该数据拟合来表示自变量(x 值)和数值结果(y 值)。然后就可以用这条线来预测未来的值!这种算法最常用的技术是最小二乘法(Least of squares)。这个方法计算出最佳拟合线,以使得与直线上每个数据点的垂直距离最小。总距离是所有数据点的垂直距离(绿线)的平方和。其思想是通过最小化这个平方误差或距离来拟合模型。例如

多项式回归是一种适用于非线性数据关系的回归分析方法。与简单线性回归模型只能拟合直线关系不同,多项式回归模型可以更准确地拟合复杂的曲线关系。它通过引入多项式特征,将变量的高阶项加入模型,从而更好地适应数据的非线性变化。这种方法可以提高模型的灵活性和拟合度,从而更准确地预测和解释数据。多项式回归模型的基本形式为:y=β0+β1x+β2x^2+…+βn*x^n+ε在这个模型中,y是我们要预测的因变量,x是自变量。β0~βn是模型的系数,它们决定了自变量对因变量的影响程度。ε表示模型的误差项,它是由无法

Logistic回归是一种用于分类问题的线性模型,主要用于预测二分类问题中的概率值。它通过使用sigmoid函数将线性预测值转换为概率值,并根据阈值进行分类决策。在Logistic回归中,OR值是一个重要的指标,用于衡量模型中不同变量对结果的影响程度。OR值代表了自变量的单位变化对因变量发生的概率的倍数变化。通过计算OR值,我们可以判断某个变量对模型的贡献程度。OR值的计算方法是取指数函数(exp)的自然对数(ln)的系数,即OR=exp(β),其中β是Logistic回归模型中自变量的系数。具

广义线性模型和一般线性模型是统计学中常用的回归分析方法。尽管这两个术语相似,但它们在某些方面有区别。广义线性模型允许因变量服从非正态分布,通过链接函数将预测变量与因变量联系起来。而一般线性模型假设因变量服从正态分布,使用线性关系进行建模。因此,广义线性模型更加灵活,适用范围更广。1.定义和范围一般线性模型是一种回归分析方法,适用于因变量与自变量之间存在线性关系的情况。它假设因变量服从正态分布。广义线性模型是一种适用于因变量不一定服从正态分布的回归分析方法。它通过引入链接函数和分布族,能够描述因变

正规方程是一种用于线性回归的简单而直观的方法。通过数学公式直接计算出最佳拟合直线,而不需要使用迭代算法。这种方法特别适用于小型数据集。首先,我们来回顾一下线性回归的基本原理。线性回归是一种用于预测因变量Y与一个或多个自变量X之间关系的方法。简单线性回归中只有一个自变量X,而多元线性回归中则包含两个或更多个自变量。在线性回归中,我们使用最小二乘法拟合直线,使数据点到直线的距离和最小。直线方程为:Y=β0+β1X1+β2X2+…+βnXn方程的目标是找到最佳的截距和回归系数,以使其能够最好地拟合数据


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

ホットトピック



