AUC スコアと部分 AUC スコアの相関関係
AUC スコアは、二項分類モデルのパフォーマンスを評価するために一般的に使用される指標です。従来の計算方法は、ROC 曲線を描き、曲線の下の面積を計算することによって AUC スコアを取得することです。 ROC 曲線は、縦軸に真陽性率 (TPR)、横軸に偽陽性率 (FPR) をとり、考えられるすべてのしきい値をプロットします。 AUC スコアの範囲は 0.5 (ランダム モデル) から 1 (完全なモデル) で、値が 1 に近づくほど、モデルのパフォーマンスが向上します。
ただし、実際のアプリケーションでは、ターゲット変数のクラス分布が非常に不均衡になる可能性があります。この場合、従来の AUC スコアではモデルのパフォーマンスを正確に評価できない可能性があります。 AUC スコアは、クラス分布の不均衡を考慮せずに、すべてのしきい値でのパフォーマンスを要約しているためです。したがって、モデルのパフォーマンスをより包括的に評価するには、精度、再現率、F1 スコアなどの他の評価指標を使用する必要があります。
バイアス AUC は、ROC 曲線の特定の領域に焦点を当てます。従来の AUC との違いは、モデルのパフォーマンスのより洗練された評価が提供されることです。特にクラス分布の不均衡が非常に大きい場合、部分的な AUC によりモデルのパフォーマンスをより正確に評価できます。その目的は、特定の領域でのパフォーマンスを強調し、重要な範囲内でモデルがどの程度優れたパフォーマンスを発揮するかをより適切に評価できるようにすることです。
不正検出問題では、部分 AUC スコアを使用して、不正インスタンスを捕捉する際のモデルのパフォーマンスを評価できます。部分 AUC スコアは、過半数クラス インスタンスのパフォーマンスを無視できるように、偽陽性率が一定の値未満の場合について計算されます。部分的な AUC スコアは、モデルの選択、改善、およびしきい値の調整に関する決定を行うのに役立ちます。
偏った AUC スコアは従来の AUC スコアに代わるものではなく、従来の AUC スコアと組み合わせて使用される補完的なツールであることに注意してください。これらは、特に ROC 曲線の特定の領域において、より詳細な評価を提供します。ただし、従来の AUC スコアは、モデルの全体的なパフォーマンスのより包括的な評価を提供します。したがって、部分 AUC スコアと従来の AUC スコアを組み合わせて使用すると、モデルのパフォーマンスをより適切に評価できます。
二項分類モデルを評価する場合、モデルのパフォーマンスを完全に理解するために、従来の AUC スコアと部分 AUC スコアの両方を使用することをお勧めします。これは、ROC 曲線をプロットし、曲線の特定の領域について従来の部分的な AUC スコアを計算することで実現できます。これにより、特に不均衡なデータセットを扱う場合に、さまざまなしきい値でのモデルのパフォーマンスをより正確に評価できるようになります。
部分 AUC スコアの計算方法
部分 AUC スコアの計算には、ROC 曲線を複数の区間に分割し、各区間内の AUC を計算することが含まれます。これらの間隔を定義するには、真陽性率 (TPR) と偽陽性率 (FPR) を間隔の境界として使用でき、必要に応じて間隔のサイズを調整して評価の精度を制御できます。各区間の部分 AUC スコアは、区間の境界によって形成される長方形の領域と区間内の ROC 曲線の合計を計算することによって取得できます。
したがって、部分 AUC スコアは、特にクラス分布が不均衡な場合に、二項分類モデルのパフォーマンスを評価する際に重要な役割を果たします。 ROC 曲線の特定の領域に焦点を当てることにより、部分 AUC スコアによりモデルのパフォーマンスをより詳細に評価できます。部分 AUC スコアとその使用方法を理解することは、二項分類モデルの評価プロセスにおける重要な要素です。
以上が部分AUCスコアとAUCスコアの相関関係とその計算方法を計算するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

HiddenLayerの画期的な研究は、主要な大規模な言語モデル(LLMS)における重大な脆弱性を明らかにしています。 彼らの発見は、ほぼすべての主要なLLMSを回避できる「政策の人形劇」と呼ばれる普遍的なバイパス技術を明らかにしています

環境責任と廃棄物の削減の推進は、企業の運営方法を根本的に変えています。 この変革は、製品開発、製造プロセス、顧客関係、パートナーの選択、および新しいものの採用に影響します

高度なAIハードウェアに関する最近の制限は、AI優位のためのエスカレートする地政学的競争を強調し、中国の外国半導体技術への依存を明らかにしています。 2024年、中国は3,850億ドル相当の半導体を大量に輸入しました

GoogleからのChromeの強制的な売却の可能性は、ハイテク業界での激しい議論に火をつけました。 Openaiが65%の世界市場シェアを誇る大手ブラウザを取得する見込みは、THの将来について重要な疑問を提起します

全体的な広告の成長を上回っているにもかかわらず、小売メディアの成長は減速しています。 この成熟段階は、生態系の断片化、コストの上昇、測定の問題、統合の複雑さなど、課題を提示します。 ただし、人工知能

古いラジオは、ちらつきと不活性なスクリーンのコレクションの中で静的なパチパチと鳴ります。簡単に不安定になっているこの不安定な電子機器の山は、没入型展示会の6つのインスタレーションの1つである「e-waste land」の核心を形成しています。

Google Cloudの次の2025年:インフラストラクチャ、接続性、およびAIに焦点を当てています Google Cloudの次の2025年の会議では、多くの進歩を紹介しました。 特定の発表の詳細な分析については、私の記事を参照してください

今週はAIとXR:AIを搭載した創造性の波が、音楽の世代から映画制作まで、メディアとエンターテイメントを席巻しています。 見出しに飛び込みましょう。 AIに生成されたコンテンツの影響力の高まり:テクノロジーコンサルタントのShelly Palme


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

WebStorm Mac版
便利なJavaScript開発ツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

ホットトピック









