検索
ホームページテクノロジー周辺機器AI特徴抽出におけるボルツマン マシンの応用ガイド

特徴抽出におけるボルツマン マシンの応用ガイド

Jan 22, 2024 pm 10:06 PM
特徴エンジニアリング人工ニューラルネットワーク

特徴抽出におけるボルツマン マシンの応用ガイド

ボルツマン マシン (BM) は、ニューロン間のランダムな接続関係を持つ複数のニューロンで構成される確率ベースのニューラル ネットワークです。 BM の主なタスクは、データの確率分布を学習して特徴を抽出することです。この記事では、BM を特徴抽出に適用する方法と実際の適用例をいくつか紹介します。

1. BM

BM の基本構造は、可視層と非表示層で構成されます。可視層は生データを受け取り、隠れ層は学習を通じて高度な特徴表現を取得します。

BM では、各ニューロンには 2 つの状態 (それぞれ 0 と 1) があります。 BM の学習プロセスは、トレーニング段階とテスト段階に分けることができます。トレーニング フェーズでは、BM はテスト フェーズで新しいデータ サンプルを生成するためにデータの確率分布を学習します。テスト段階では、BM を特徴抽出や分類などのタスクに適用できます。

2. BM トレーニング プロセス

BM トレーニングでは通常、逆伝播アルゴリズムが使用されます。このアルゴリズムは、ネットワーク内のすべての重みの勾配を計算し、これらの勾配を使用して重みを更新します。 BM のトレーニング プロセスには次のステップが含まれます。 まず、順伝播を通じて、入力データが入力層から出力層に渡され、ネットワークの出力が計算されます。次に、出力を期待される出力と比較することにより、ネットワークの誤差が計算されます。次に、逆伝播アルゴリズムが使用され、出力層から開始して各重みの勾配が層ごとに計算され、勾配降下法を使用して重みが更新されます。このプロセスは、ネットワークの誤差が許容範囲に達するまで複数回繰り返されます。

1. BM の重み行列とバイアス ベクトルを初期化します。

2. データ サンプルを BM の表示レイヤーに入力します。

3. BM のランダム活性化関数 (シグモイド関数など) を通じて隠れ層ニューロンの状態を計算します。

4. 隠れ層ニューロンの状態に基づいて、可視層と隠れ層の同時確率分布を計算します。

5. バックプロパゲーション アルゴリズムを使用して、重み行列とバイアス ベクトルの勾配を計算し、それらの値を更新します。

6. BM の重み行列とバイアス ベクトルが収束するまでステップ 2 ~ 5 を繰り返します。

BM トレーニング プロセス中に、さまざまな最適化アルゴリズムを使用して重み行列とバイアス ベクトルを更新できます。一般的に使用される最適化アルゴリズムには、確率的勾配降下法 (SGD)、Adam、Adagrad などが含まれます。

3. 特徴抽出における BM の応用

BM は特徴抽出タスクに使用できます。基本的な考え方は、データの確率分布を学習することです。データの高レベルの特徴表現を抽出します。具体的には、BM の隠れ層ニューロンを特徴抽出器として使用でき、これらのニューロンの状態をデータの高レベルの特徴表現として使用できます。

たとえば、画像認識タスクでは、BM を使用して画像の高レベルの特徴表現を抽出できます。まず、元の画像データをBMの可視層に入力します。続いて、BMトレーニング処理により、画像データの確率分布が学習される。最後に、BM の隠れ層ニューロンの状態は、後続の分類タスクのための画像の高レベルの特徴表現として使用されます。

同様に、自然言語処理タスクでは、BM を使用してテキストの高レベルの特徴表現を抽出できます。まず、生のテキスト データが BM の可視層に入力されます。続いて、BM トレーニング プロセスを通じて、テキスト データの確率分布を学習します。最後に、BM の隠れ層ニューロンの状態は、その後の分類、クラスタリング、その他のタスクのためのテキストの高レベルの特徴表現として使用されます。

BM の利点と欠点

確率ベースのニューラル ネットワーク モデルとして、BM には次の利点があります:

1. データの確率分布を学習して、データの高レベルの特徴表現を抽出できます。

2. 新しいデータ サンプルの生成に使用でき、特定の生成機能があります。

3. 不完全なデータやノイズの多いデータを処理でき、一定の堅牢性を備えています。

ただし、BM にはいくつかの欠点もあります:

1. トレーニング プロセスは比較的複雑で、バックプロパゲーションなどの最適化アルゴリズムの使用が必要です。トレーニング用のアルゴリズム。

2. トレーニングには長い時間がかかり、多くのコンピューティング リソースと時間を必要とします。

3. 隠れ層ニューロンの数を事前に決定する必要がありますが、これはモデルの拡張や適用に役立ちません。

以上が特徴抽出におけるボルツマン マシンの応用ガイドの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は网易伏羲で複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
個人的なハッキングはかなり激しいクマになります個人的なハッキングはかなり激しいクマになりますMay 11, 2025 am 11:09 AM

サイバー攻撃が進化しています。 一般的なフィッシングメールの時代は終わりました。 サイバー犯罪の将来は超個人化されており、高度にターゲットを絞った攻撃を作成するために、容易に利用可能なオンラインデータとAIを活用しています。 あなたの仕事を知っている詐欺師を想像してください、あなたのf

教皇レオXIVは、AIが彼の名前の選択にどのように影響したかを明らかにします教皇レオXIVは、AIが彼の名前の選択にどのように影響したかを明らかにしますMay 11, 2025 am 11:07 AM

枢機of大学への彼の​​就任演説では、シカゴ生まれのロバート・フランシス・プレボスト、新たに選出された教皇レオ14世は、彼の同名の教皇レオXIIIの影響について議論しました。

初心者および専門家向けのFastapi -MCPチュートリアル-Analytics Vidhya初心者および専門家向けのFastapi -MCPチュートリアル-Analytics VidhyaMay 11, 2025 am 10:56 AM

このチュートリアルでは、モデルコンテキストプロトコル(MCP)とFastAPIを使用して、大規模な言語モデル(LLM)と外部ツールを統合する方法を示しています。 FastAPIを使用して簡単なWebアプリケーションを構築し、それをMCPサーバーに変換し、Lを有効にします

DIA-1.6B TTS:最高のテキストからダイアログの生成モデル - 分析VidhyaDIA-1.6B TTS:最高のテキストからダイアログの生成モデル - 分析VidhyaMay 11, 2025 am 10:27 AM

DIA-1.6Bを探索:資金がゼロの2人の学部生によって開発された画期的なテキストからスピーチモデル! この16億個のパラメーターモデルは、笑い声やくしゃみなどの非言語的手がかりを含む、非常に現実的なスピーチを生成します。この記事ガイド

AIがメンターシップをこれまで以上に意味のあるものにする3つの方法AIがメンターシップをこれまで以上に意味のあるものにする3つの方法May 10, 2025 am 11:17 AM

私は心から同意します。 私の成功は、メンターの指導に密接に関連しています。 特にビジネス管理に関する彼らの洞察は、私の信念と実践の基盤を形成しました。 この経験は、メンターへの私のコミットメントを強調しています

AIは、鉱業で新しい可能性を発掘しますAIは、鉱業で新しい可能性を発掘しますMay 10, 2025 am 11:16 AM

AIはマイニング機器を強化しました 採掘操作環境は厳しく危険です。人工知能システムは、最も危険な環境から人間を排除し、人間の能力を高めることにより、全体的な効率とセキュリティを改善するのに役立ちます。人工知能は、マイニング操作で使用される自動運転トラック、ドリル、ローダーの電源にますます使用されています。 これらのAI搭載車両は、危険な環境で正確に動作し、それにより安全性と生産性が向上します。一部の企業は、大規模な鉱業作業のために自動鉱業車両を開発しています。 挑戦的な環境で動作する機器には、継続的なメンテナンスが必要です。ただし、メンテナンスは重要なデバイスをオフラインに保ち、リソースを消費する可能性があります。より正確なメンテナンスとは、高価で必要な機器の稼働時間が増加し、大幅なコスト削減を意味します。 AI駆動型

AIエージェントが25年で最大の職場革命を引き起こす理由AIエージェントが25年で最大の職場革命を引き起こす理由May 10, 2025 am 11:15 AM

SalesforceのCEOであるMarc Benioffは、AIエージェントが推進する記念碑的な職場革命、Salesforceとその顧客ベース内ですでに進行中の変革を予測しています。 彼は、従来の市場から、に焦点を当てた非常に大きな市場への移行を想定しています

ai hrは、aiの養子縁組が舞い上がるので私たちの世界を揺るがそうとしていますai hrは、aiの養子縁組が舞い上がるので私たちの世界を揺るがそうとしていますMay 10, 2025 am 11:14 AM

HRでのAIの台頭:ロボットの同僚との労働力をナビゲートする AIと人事(HR)への統合は、もはや未来の概念ではありません。急速に新しい現実になりつつあります。 このシフトは、人事の専門家と従業員の両方のDEMに影響を与えます

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません