再帰的特徴削除 (RFE) は、データ セットの次元を効果的に削減し、モデルの精度と効率を向上させる、一般的に使用される特徴選択手法です。機械学習では、特徴の選択は重要なステップであり、これにより無関係または冗長な特徴を削除し、それによってモデルの汎化能力と解釈可能性を向上させることができます。 RFE アルゴリズムは、段階的な反復を通じてモデルをトレーニングして最も重要度の低い特徴を削除し、指定された特徴数に達するか特定のパフォーマンス メトリックに達するまでモデルを再度トレーニングすることによって機能します。この自動化された特徴選択方法により、モデルのパフォーマンスが向上するだけでなく、トレーニング時間とコンピューティング リソースの消費も削減できます。全体として、RFE は、特徴選択プロセスに役立つ強力なツールです。
#RFE は、モデルをトレーニングし、指定された条件を満たすまで重要度の低い特徴を徐々に減らすための反復的な方法です。フィーチャの数または停止基準。各反復で、RFE は各特徴の重要度スコアを計算し、スコアが最も低い特徴を削除します。このプロセスは、指定された特徴数に達するか、すべての特徴の重要度スコアが指定されたしきい値を超えるまで継続されます。
実際のアプリケーションでは、RFE は通常、サポート ベクター マシンやロジスティック回帰などのいくつかの強力なモデルと一緒に使用されます。これらのモデルでは、高精度の分類や予測を実現するために多数の特徴が必要ですが、特徴が多すぎると、モデルの過剰適合や過度の計算の複雑さにつながる可能性があります。したがって、RFE を使用すると、最適な特徴サブセットを見つけて、モデルの汎化パフォーマンスと計算効率を向上させることができます。
RFE の詳細な手順は次のとおりです:
1. 強力な機械学習モデルを選択します
サポート ベクター マシンやロジスティック回帰など、タスクに適した強力な機械学習モデルを選択します。これらのモデルは通常、高精度の分類や予測を実現するために多数の特徴を必要としますが、特徴が多すぎるとモデルの過剰適合や過剰な計算の複雑さにつながる可能性があります。
2. 各特徴の重要度スコアを計算する
選択した機械学習モデル、インジケーターなどを使用して、各特徴の重要度スコアを計算します。通常、特徴の重みまたは特徴の重要度は、モデルのパフォーマンスに対する各特徴の寄与を測定するために使用されます。これらのスコアに基づいて、機能は重要度の高いものから低いものへとランク付けされます。
3. 最も重要度の低い特徴を削除します
ソートされた特徴リストから最もスコアの低い特徴を削除します。このプロセスは継続されます。指定された特徴数に達したか、すべての特徴の重要度スコアが指定されたしきい値を超えました。
4. 指定されたフィーチャ数または停止基準に達するまで、ステップ 2 と 3 を繰り返します。
ステップ 2 と 3 を、指定されたフィーチャ数に達したか、特定の停止基準が満たされました。通常、停止基準は、相互検証エラー、特徴重要度の変化率、またはその他の指標に基づいて定義できます。
5. 選択したモデルをトレーニングし、パフォーマンスを評価します。
選択した機能サブセットを使用して機械学習モデルをトレーニングし、モデルのパフォーマンスを評価します。モデルのパフォーマンスが十分でない場合は、パラメーターを調整するか、他のモデルを選択してさらに最適化することができます。
RFE には次の利点があります:
- 最適な特徴サブセットを自動的に見つけることができるため、モデルの汎化パフォーマンスと計算効率が向上します。 。
- 特徴の数を減らすことができるため、モデルの過剰適合のリスクが軽減されます。
- を使用すると、重要でない機能や冗長な機能を削除すると、モデルの理解と説明が容易になるため、モデルの解釈可能性が向上します。
- 構造化データ、非構造化データを含むさまざまな種類のデータに適用できます。
- サポート ベクター マシン、ロジスティック回帰、デシジョン ツリーなど、さまざまな強力な機械学習モデルとともに使用できます。
ただし、RFE にはいくつかの欠点もあります。
- RFE は、複数のモデルをトレーニングする必要があるため、計算の複雑さが高くなります。を計算し、各特徴の重要度スコアを計算します。
- RFE は貪欲な戦略に基づいているため、グローバルに最適な機能サブセットを常に見つけられるとは限りません。
- RFE は、高次元データを処理するときに問題が発生する可能性があります。これは、特徴間の相関関係により、一部の有用な特徴が誤って削除される可能性があるためです。
一般に、RFE は、最適な特徴サブセットを見つけるのに役立つ非常に実用的な特徴選択テクノロジであり、それによって汎化パフォーマンスとモデルのパフォーマンスが向上します。実際のアプリケーションでは、特定のタスク要件とデータ特性に基づいて適切な特徴選択手法を選択し、適切なパラメーター調整とモデルの最適化を実行する必要があります。
以上が再帰的特徴除去法のRFEアルゴリズムの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

HiddenLayerの画期的な研究は、主要な大規模な言語モデル(LLMS)における重大な脆弱性を明らかにしています。 彼らの発見は、ほぼすべての主要なLLMSを回避できる「政策の人形劇」と呼ばれる普遍的なバイパス技術を明らかにしています

環境責任と廃棄物の削減の推進は、企業の運営方法を根本的に変えています。 この変革は、製品開発、製造プロセス、顧客関係、パートナーの選択、および新しいものの採用に影響します

高度なAIハードウェアに関する最近の制限は、AI優位のためのエスカレートする地政学的競争を強調し、中国の外国半導体技術への依存を明らかにしています。 2024年、中国は3,850億ドル相当の半導体を大量に輸入しました

GoogleからのChromeの強制的な売却の可能性は、ハイテク業界での激しい議論に火をつけました。 Openaiが65%の世界市場シェアを誇る大手ブラウザを取得する見込みは、THの将来について重要な疑問を提起します

全体的な広告の成長を上回っているにもかかわらず、小売メディアの成長は減速しています。 この成熟段階は、生態系の断片化、コストの上昇、測定の問題、統合の複雑さなど、課題を提示します。 ただし、人工知能

古いラジオは、ちらつきと不活性なスクリーンのコレクションの中で静的なパチパチと鳴ります。簡単に不安定になっているこの不安定な電子機器の山は、没入型展示会の6つのインスタレーションの1つである「e-waste land」の核心を形成しています。

Google Cloudの次の2025年:インフラストラクチャ、接続性、およびAIに焦点を当てています Google Cloudの次の2025年の会議では、多くの進歩を紹介しました。 特定の発表の詳細な分析については、私の記事を参照してください

今週はAIとXR:AIを搭載した創造性の波が、音楽の世代から映画制作まで、メディアとエンターテイメントを席巻しています。 見出しに飛び込みましょう。 AIに生成されたコンテンツの影響力の高まり:テクノロジーコンサルタントのShelly Palme


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

ホットトピック









