ホームページ >ウェブ3.0 >粒子群最適化アルゴリズム (PSO) の Python 実装の概要

粒子群最適化アルゴリズム (PSO) の Python 実装の概要

王林
王林転載
2024-01-19 16:48:17866ブラウズ

粒子群优化算法(PSO)是一种强大的元启发式算法,受群体行为启发,如鱼和鸟群。

粒子群算法概念

假设有一群鸟,它们都感到饥饿,正在寻找食物。这些鸟可以与计算系统中渴望资源的任务相关联。在它们所在的地方,只有一种食物颗粒,这种食物颗粒可以代表资源。

众所周知,任务很多,资源有限。因此,这已成为与特定计算环境中类似的条件。

现在,鸟类不知道食物颗粒隐藏在何处。在这种情况下,应该如何设计寻找食物颗粒的算法。

鸟类寻找食物的方式可以用来设计一种称为粒子群优化算法(PSO)的算法。如果每只鸟都试图独自寻找食物,可能会造成严重破坏并浪费大量时间。尽管鸟类不知道食物颗粒确切的位置,但它们知道与食物颗粒的距离。因此,最佳的寻找食物颗粒的方法是跟随离食物颗粒最近的鸟类。PSO算法模拟了鸟类的这种行为,并在计算环境中应用。这种算法的应用可以有效地解决一些优化问题。

Python实现粒子群算法

设定问题参数:维数(d)、下限(minx)、上限(maxx)

算法超参数:粒子数(N)、最大迭代次数(max_iter)、惰性(w)、粒子的认知(C1)、群体的社会影响(C2)

Step1:随机初始化N个粒子Xi(i=1,2,...,n)的Swarm种群

Step2:选择超参数值w,c1和c2

Step3:

For Iter in range(max_iter):
For i in range(N):
a.Compute new velocity of ith particle
swarm<i>.velocity=
w*swarm<i>.velocity+
r1*c1*(swarm<i>.bestPos-swarm<i>.position)+
r2*c2*(best_pos_swarm-swarm<i>.position)
b.If velocity is not in range[minx,max]then clip it
if swarm<i>.velocity&lt;minx:
swarm<i>.velocity=minx
elif swarm<i>.velocity[k]&gt;maxx:
swarm<i>.velocity[k]=maxx
c.Compute new position of ith particle using its new velocity
swarm<i>.position+=swarm<i>.velocity
d.Update new best of this particle and new best of Swarm

if swarm<i>.fitness&lt;swarm<i>.bestFitness:
swarm<i>.bestFitness=swarm<i>.fitness
swarm<i>.bestPos=swarm<i>.position

if swarm<i>.fitness&lt;best_fitness_swarm
best_fitness_swarm=swarm<i>.fitness
best_pos_swarm=swarm<i>.position
End-for
End-for
Step 4:Return best particle of Swarm

以上が粒子群最適化アルゴリズム (PSO) の Python 実装の概要の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明:
この記事は163.comで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。