A. sort_buffer_size 排序缓存。
B. read_rnd_buffer_size 第二次排序缓存。
C. max_length_for_sort_data 带普通列的最大排序约束。
我来简单说下MySQL的排序规则。
假设查询语句select * from tb1 where 1 order by a ; 字段a没有建立索引;以上三个参数都足够大。
MySQL内部有两种排序规则:
第一种,是普通的排序。这种排序的特点是节省内存,但是最终会对磁盘有一次随机扫描。 大概主要过程如下:
1. 由于没有WHERE条件,所以直接对磁盘进行全表扫描,把字段a以及每行的物理ID(假设为TID)拿出来。然后把所有拿到的记录全部放到sort_buffer_size中进行排序。
2. 根据排好序的TID,从磁盘随机扫描所需要的所有记录,排好序后再次把所有必须的记录放到read_rnd_buffer_size中。
第二种,是冗余排序。这种排序的特点是不需要二次对磁盘进行随机扫描,但是缺点很明显,太浪费内存空间。
跟第一种不同的是,在第一步里拿到的不仅仅是字段a以及TID,而是把所有请求的记录全部拿到后,放到sort_buffer_size中进行排序。这样可以直接从缓存中返回记录给客户端,不用再次从磁盘上获取一次。
从MySQL 5.7 后,对第二种排序进行了打包压缩处理,避免太浪费内存。比如对于varchar(255)来说,实际存储为varchar(3)。那么相比之前的方式节约了好多内存,避免缓存区域不够时,建立磁盘临时表。
以下为简单的演示
mysql> use t_girl;
Database changed
三个参数的具体值:
mysql> select truncate(@@sort_buffer_size/1024/1024,2)||'MB' as 'sort_buffer_size',truncate(@@read_rnd_buffer_size/1024/1024,2)||'MB' as read_rnd_buffer_zie,@@max_length_for_sort_data as max_length_for_sort_data;+------------------+---------------------+--------------------------+| sort_buffer_size | read_rnd_buffer_zie | max_length_for_sort_data |+------------------+---------------------+--------------------------+| 2.00MB | 2.00MB | 1024 |+------------------+---------------------+--------------------------+1 row in set (0.00 sec)
演示表的相关数据:
mysql> select table_name,table_rows,concat(truncate(data_length/1024/1024,2),'MB') as 'table_size' from information_schema.tables where table_name = 't1' and table_schema = 't_girl';+------------+------------+------------+| table_name | table_rows | table_size |+------------+------------+------------+| t1 | 2092640 | 74.60MB |+------------+------------+------------+1 row in set (0.00 sec)
开启优化器跟踪:
mysql> SET OPTIMIZER_TRACE="enabled=on",END_MARKERS_IN_JSON=on;Query OK, 0 rows affected (0.00 sec)
从数据字典里面拿到跟踪结果:
mysql> select * from information_schema.optimizer_trace/G*************************** 1. row *************************** QUERY: select * from t1 where id " } /* filesort_summary */ } ] /* steps */ } /* join_execution */ } ] /* steps *

MySQLインデックスのカーディナリティは、クエリパフォーマンスに大きな影響を及ぼします。1。高いカーディナリティインデックスは、データ範囲をより効果的に狭め、クエリ効率を向上させることができます。 2。低カーディナリティインデックスは、完全なテーブルスキャンにつながり、クエリのパフォーマンスを削減する可能性があります。 3。ジョイントインデックスでは、クエリを最適化するために、高いカーディナリティシーケンスを前に配置する必要があります。

MySQL学習パスには、基本的な知識、コアの概念、使用例、最適化手法が含まれます。 1)テーブル、行、列、SQLクエリなどの基本概念を理解します。 2)MySQLの定義、作業原則、および利点を学びます。 3)インデックスやストアドプロシージャなどの基本的なCRUD操作と高度な使用法をマスターします。 4)インデックスの合理的な使用や最適化クエリなど、一般的なエラーのデバッグとパフォーマンス最適化の提案に精通しています。これらの手順を通じて、MySQLの使用と最適化を完全に把握できます。

MySQLの実際のアプリケーションには、基本的なデータベース設計と複雑なクエリの最適化が含まれます。 1)基本的な使用法:ユーザー情報の挿入、クエリ、更新、削除など、ユーザーデータの保存と管理に使用されます。 2)高度な使用法:eコマースプラットフォームの注文や在庫管理など、複雑なビジネスロジックを処理します。 3)パフォーマンスの最適化:インデックス、パーティションテーブル、クエリキャッシュを使用して合理的にパフォーマンスを向上させます。

MySQLのSQLコマンドは、DDL、DML、DQL、DCLなどのカテゴリに分割でき、データベースとテーブルの作成、変更、削除、データの挿入、更新、削除、複雑なクエリ操作の実行に使用できます。 1.基本的な使用には、作成可能な作成テーブル、INSERTINTO INSERTデータ、クエリデータの選択が含まれます。 2。高度な使用法には、テーブル結合、サブQueries、およびデータ集約のためのグループに参加します。 3.構文エラー、データ型の不一致、許可の問題などの一般的なエラーは、構文チェック、データ型変換、許可管理を介してデバッグできます。 4.パフォーマンス最適化の提案には、インデックスの使用、フルテーブルスキャンの回避、参加操作の最適化、およびデータの一貫性を確保するためのトランザクションの使用が含まれます。

INNODBは、ロックメカニズムとMVCCを通じて、非論的、一貫性、および分離を通じて原子性を達成し、レッドログを介した持続性を達成します。 1)原子性:Undologを使用して元のデータを記録して、トランザクションをロールバックできることを確認します。 2)一貫性:行レベルのロックとMVCCを介してデータの一貫性を確保します。 3)分離:複数の分離レベルをサポートし、デフォルトでrepeatable -readが使用されます。 4)持続性:Redologを使用して修正を記録し、データが長時間保存されるようにします。

データベースとプログラミングにおけるMySQLの位置は非常に重要です。これは、さまざまなアプリケーションシナリオで広く使用されているオープンソースのリレーショナルデータベース管理システムです。 1)MySQLは、効率的なデータストレージ、組織、および検索機能を提供し、Web、モバイル、およびエンタープライズレベルのシステムをサポートします。 2)クライアントサーバーアーキテクチャを使用し、複数のストレージエンジンとインデックスの最適化をサポートします。 3)基本的な使用には、テーブルの作成とデータの挿入が含まれ、高度な使用法にはマルチテーブル結合と複雑なクエリが含まれます。 4)SQL構文エラーやパフォーマンスの問題などのよくある質問は、説明コマンドとスロークエリログを介してデバッグできます。 5)パフォーマンス最適化方法には、インデックスの合理的な使用、最適化されたクエリ、およびキャッシュの使用が含まれます。ベストプラクティスには、トランザクションと準備された星の使用が含まれます

MySQLは、中小企業に適しています。 1)中小企業は、顧客情報の保存など、基本的なデータ管理にMySQLを使用できます。 2)大企業はMySQLを使用して、大規模なデータと複雑なビジネスロジックを処理して、クエリのパフォーマンスとトランザクション処理を最適化できます。

INNODBは、次のキーロックメカニズムを通じてファントムの読み取りを効果的に防止します。 1)Next-KeyLockingは、Row LockとGap Lockを組み合わせてレコードとギャップをロックして、新しいレコードが挿入されないようにします。 2)実際のアプリケーションでは、クエリを最適化して分離レベルを調整することにより、ロック競争を削減し、並行性パフォーマンスを改善できます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境
