系统简介
本系统负责将Hive处理后的数据导出到MySQL服务器上,采用 主/从
架构。zeus2将待导出的数据信息放到zookeeper上,Zookeeper将该信息发送给master。master通过JobWatcher接收待处理的表信息,将这些信息转换为任务,并分发给client处理。当client处理完成时,会更新MySQL上数据处理表,表示该部分任务已经处理完成
模块简介
master
- 简介
为服务,会一直运行。包含接收zookeeper上传来的待导出数据的元信息、任务导出、任务超时处理、任务执行完成后的元数据更新、告警等功能 - 流程
- 启动master服务
- 通过JobWatcher线程获取待处理的任务,并更新到队列MasterContext.finishedTZ中
- MasterContext中加入一个线程,扫描队列MasterContext.finishedTZ,如果有任务,则开始解析任务并进行任务分发
- 任务分发的时候,将分发任务加入到executor,执行完成的时候,得到返回码,并根据返回码,进行相应的处理
- MasterContext中加入一个线程,用于监控超时的client,如果超时,则将该client加入到超时列表中,以后不进行分发
- 关键点
- MySQL节点的选择
- 需求
为了后续计算的方便,需要将能存储在一个MySQL服务器上的数据全部导出到一个节点上,例如上个月站点A
导出到MySQL1
上,这个月,还得将站点A
的数据导出到节点MySQL1
上。 - 解决方案
导出时,为了保证每次数据都导出到一个节点上去,需要维持一张site和host间对应的关系表。而部分站点的数据非常大,会超过MySQL服务器的单表阈值,这样部分站点的数据需要分发到不同的节点上去。site和节点之间的关系不是一一对应的。而大站点只是用户中的一部分,还存在一些小站点,一个MySQL服务器可能存放数个站点的数据。为了应对这些挑战,我们将站点分为三种SITE_LEVEL:SMALL_SITE、BIG_SITE、HUG_SITE,并分别采用不同的导出策略。
SMALL_SITE 网站的数据量较小,一个站点只存放在一个MySQL服务器上去。所有的数据都会导出到一台MYSQL服务器上去。当数据超过MYSQL服务器单表限制的时候,会将数据导出到负载最小的MySQL服务器上去。某site很长时间以来一直使用我们的服务器时,可能会出现这种情况。
BIG_SITE 导出的策略和SMALL_SITE一样,但是获取MySQL服务器的方法和SMALL_SITE不一样,BIG_SITE按照轮询的方式将HIVE上的数据导出到MYSQL中去,即今天的数据导出到MYSQL1
上,明天的数据可能导出到MySQL2上。而SMALL_SITE的数据均导出到一台MYSQL服务器上。
HUG_SITE 将站点每天的访问信息分发到不同的MYSQL服务器上去
- 注解
- HDFS路径
/user/hive/warehouse/ptmind_data.db/${tableName}_${tableType}/sitetz=${timezone}/partdt=${date}/partsid=${sid}
如/user/hive/warehouse/ptmind_data.db/sum_page_visits_stats_olap_d/sitetz=E0800/partdt=2014-06-02/partsid=56fbce4e
- tableType
明细表的类型为x,其他表暂时只支持天d
private String getTabType(String tableName) {if (tableName.equals(Constant.TB_1)) { return x;}else { return d;}}
- HDFS路径
client
- 简介
- 部署在MySQL服务器上
- 执行HDFS2MySQL的导出任务
- 流程
- 通过clientBootstrap监控消息
- 当监控到任务时,执行HDFS2MySQL的导出任务
2.1 通过shell脚本,从HDFS上下载数据
2.2 将元数据更新到MySQL服务器中
2.3 删除本地文件
2.4 根据表中插入行的数目判断数据是否导出成功
2.5 将执行情况返回给master - 定时向master发送心跳信息
- 注解
- 存储的本地路径:
/tmp/ptbalancer/data/${tableName}_${tableType}_${date}_${当前时间戳}
节点间通信
-
中间件
netty
master
ServerBootstrap
client
ClientBootstrap
传输数据 PB
相比XML,PB有更好的传输效率、压缩率更高、解析速度更快

MySQLはオープンソースのリレーショナルデータベース管理システムであり、主にデータを迅速かつ確実に保存および取得するために使用されます。その実用的な原則には、クライアントリクエスト、クエリ解像度、クエリの実行、返品結果が含まれます。使用法の例には、テーブルの作成、データの挿入とクエリ、および参加操作などの高度な機能が含まれます。一般的なエラーには、SQL構文、データ型、およびアクセス許可、および最適化の提案には、インデックスの使用、最適化されたクエリ、およびテーブルの分割が含まれます。

MySQLは、データストレージ、管理、クエリ、セキュリティに適したオープンソースのリレーショナルデータベース管理システムです。 1.さまざまなオペレーティングシステムをサポートし、Webアプリケーションやその他のフィールドで広く使用されています。 2。クライアントサーバーアーキテクチャとさまざまなストレージエンジンを通じて、MySQLはデータを効率的に処理します。 3.基本的な使用には、データベースとテーブルの作成、挿入、クエリ、データの更新が含まれます。 4.高度な使用には、複雑なクエリとストアドプロシージャが含まれます。 5.一般的なエラーは、説明ステートメントを介してデバッグできます。 6.パフォーマンスの最適化には、インデックスの合理的な使用と最適化されたクエリステートメントが含まれます。

MySQLは、そのパフォーマンス、信頼性、使いやすさ、コミュニティサポートに選択されています。 1.MYSQLは、複数のデータ型と高度なクエリ操作をサポートし、効率的なデータストレージおよび検索機能を提供します。 2.クライアントサーバーアーキテクチャと複数のストレージエンジンを採用して、トランザクションとクエリの最適化をサポートします。 3.使いやすく、さまざまなオペレーティングシステムとプログラミング言語をサポートしています。 4.強力なコミュニティサポートを提供し、豊富なリソースとソリューションを提供します。

INNODBのロックメカニズムには、共有ロック、排他的ロック、意図ロック、レコードロック、ギャップロック、次のキーロックが含まれます。 1.共有ロックにより、トランザクションは他のトランザクションが読み取らないようにデータを読み取ることができます。 2.排他的ロックは、他のトランザクションがデータの読み取りと変更を防ぎます。 3.意図ロックは、ロック効率を最適化します。 4。ロックロックインデックスのレコードを記録します。 5。ギャップロックロックインデックス記録ギャップ。 6.次のキーロックは、データの一貫性を確保するためのレコードロックとギャップロックの組み合わせです。

MySQLクエリのパフォーマンスが低いことの主な理由には、インデックスの使用、クエリオプティマイザーによる誤った実行計画の選択、不合理なテーブルデザイン、過剰なデータボリューム、ロック競争などがあります。 1.インデックスがゆっくりとクエリを引き起こし、インデックスを追加するとパフォーマンスが大幅に向上する可能性があります。 2。説明コマンドを使用してクエリ計画を分析し、オプティマイザーエラーを見つけます。 3.テーブル構造の再構築と結合条件を最適化すると、テーブルの設計上の問題が改善されます。 4.データボリュームが大きい場合、パーティション化とテーブル分割戦略が採用されます。 5.高い並行性環境では、トランザクションの最適化とロック戦略は、ロック競争を減らすことができます。

データベースの最適化では、クエリ要件に従ってインデックス作成戦略を選択する必要があります。1。クエリに複数の列が含まれ、条件の順序が固定されている場合、複合インデックスを使用します。 2。クエリに複数の列が含まれているが、条件の順序が修正されていない場合、複数の単一列インデックスを使用します。複合インデックスは、マルチコラムクエリの最適化に適していますが、単一列インデックスは単一列クエリに適しています。

MySQLスロークエリを最適化するには、slowquerylogとperformance_schemaを使用する必要があります。1。LowerQueryLogを有効にし、しきい値を設定して、スロークエリを記録します。 2。performance_schemaを使用してクエリの実行の詳細を分析し、パフォーマンスのボトルネックを見つけて最適化します。

MySQLとSQLは、開発者にとって不可欠なスキルです。 1.MYSQLはオープンソースのリレーショナルデータベース管理システムであり、SQLはデータベースの管理と操作に使用される標準言語です。 2.MYSQLは、効率的なデータストレージと検索機能を介して複数のストレージエンジンをサポートし、SQLは簡単なステートメントを通じて複雑なデータ操作を完了します。 3.使用の例には、条件によるフィルタリングやソートなどの基本的なクエリと高度なクエリが含まれます。 4.一般的なエラーには、SQLステートメントをチェックして説明コマンドを使用することで最適化できる構文エラーとパフォーマンスの問題が含まれます。 5.パフォーマンス最適化手法には、インデックスの使用、フルテーブルスキャンの回避、参加操作の最適化、コードの読み取り可能性の向上が含まれます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

メモ帳++7.3.1
使いやすく無料のコードエディター

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター
