クイック スタート: Python 人工知能ライブラリの概要、具体的なコード例が必要です
はじめに:
人工知能テクノロジーの急速な発展に伴い、Python 人工知能ライブラリは、Python 人工知能ライブラリの概要に適用されます。深層学習用の Python 人工知能ライブラリもますます増えています。これらのライブラリはさまざまな強力なツールとアルゴリズムを提供し、開発者が独自の人工知能モデルを構築およびトレーニングすることを容易にします。この記事では、一般的に使用される Python 人工知能ライブラリをいくつか紹介し、読者がすぐに使い始めるのに役立つ具体的なコード例を示します。
1. TensorFlow
TensorFlow は、Google によって開発されたオープンソースの機械学習ライブラリであり、ディープ ラーニングの分野で広く使用されています。豊富な高レベル API を提供し、畳み込みニューラル ネットワーク (CNN)、リカレント ニューラル ネットワーク (RNN) などのさまざまなネットワーク構造をサポートします。以下は画像分類に TensorFlow を使用する例です:
import tensorflow as tf from tensorflow import keras # 加载数据集 (x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data() # 数据预处理 x_train = x_train / 255.0 x_test = x_test / 255.0 # 构建模型 model = keras.models.Sequential([ keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)), keras.layers.MaxPooling2D((2, 2)), keras.layers.Flatten(), keras.layers.Dense(10, activation='softmax') ]) # 编译模型 model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) # 训练模型 model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test)) # 评估模型 test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2) print(' Test accuracy:', test_acc)
2. PyTorch
PyTorch は Facebook が開発したオープンソースの深層学習ライブラリであり、動的計算グラフと自動微分という特徴があります。以下は、画像分類に PyTorch を使用する例です:
import torch import torchvision from torchvision import datasets, transforms import torch.nn as nn import torch.optim as optim # 定义数据转换 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) # 加载数据集 trainset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2) testset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False, num_workers=2) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x # 实例化模型 net = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 2000 == 1999: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total))
結論:
この記事では、一般的に使用される 2 つの Python 人工知能ライブラリ、TensorFlow と PyTorch を紹介し、読者がすぐに使い始めるのに役立つ具体的なコード例を提供します。 。もちろん、これら 2 つのライブラリ以外にも、Keras、Scikit-learn など、優れた Python 人工知能ライブラリが多数あります。読者は、自分のニーズに応じて、学習や応用に適したライブラリを選択できます。この記事が読者の人工知能分野での学習と実践に役立つことを願っています。
以上がクイック スタート: Python 人工知能ライブラリの概要の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

Python 3.6のピクルスファイルのロードレポートエラー:modulenotFounderror:nomodulenamed ...


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境
