検索
ホームページウェブフロントエンドjsチュートリアルWebSocket と JavaScript を使用してオンライン顔認識システムを実装する方法

WebSocket と JavaScript を使用してオンライン顔認識システムを実装する方法

Dec 18, 2023 pm 04:27 PM
websocket: リアルタイム通信機能の実装に使用されます。

WebSocket と JavaScript を使用してオンライン顔認識システムを実装する方法

人間の視覚処理能力には生来の限界があるため、人間の視覚認識システムは多くの点でコンピューターと比較できません。たとえば、人間の脳力は多数の物体を認識するには十分ではありません。すぐに顔が見えます。しかし、今日の高度なコンピューター技術の中で、顔認識技術はますます成熟しています。コンピューター ビジョンと人工知能を組み合わせて使用​​することで、さまざまな顔認識テクノロジーを開発することができました。その中で最も重要なものの 1 つはオンライン顔認識システムです。この記事の目的は、WebSocket と JavaScript を使用してオンライン顔認識システムを実装する方法を紹介することです。

まず、WebSocket とは何かを理解する必要があります。 WebSocket は、TCP プロトコルに基づいたネットワーク通信プロトコルです。ブラウザとサーバーの間に永続的な接続を提供し、双方向通信を可能にします。この記事では、WebSocket を使用して画像と認識情報をクライアントからサーバーに送信し、認識結果をサーバーからクライアントに送り返します。

最初のステップは、WebSocket 接続を作成することです。クライアントで、次のコード スニペットを使用して WebSocket 接続を作成します。

let socket = new WebSocket("ws://localhost:8080/");
socket.onopen = function() {
   console.log("WebSocket连接已打开");
};
socket.onmessage = function(event) {
   console.log(event.data);
};

これにより、ローカルホスト上で WebSocket 接続が開き、ポート 8080 に接続されます。 WebSocket 接続がオープンされると、「WebSocket 接続がオープンされました」というログが出力されます。サーバーからメッセージを受信すると、メッセージデータがコンソールに出力されます。

次に、クライアントが画像情報をサーバーに送信する機能を実装する必要があります。画像をキャプチャするには、HTML5 の「」要素や「getUserMedia」API など、いくつかの方法があります。カメラ データをキャプチャする最も簡単な方法の 1 つは、「getUserMedia」API を使用することです:

let video = document.querySelector('video');
navigator.mediaDevices.getUserMedia({video: true})
  .then(function (stream) {
    video.srcObject = stream;
  });

HTML5 Canvas API を使用して、キャプチャされた画像を 要素に描画できるようになりました:

let canvas = document.getElementById('canvas');
let context = canvas.getContext('2d');
context.drawImage(video, 0, 0, canvas.width, canvas.height);

画像データは Base64 文字列として抽出され、WebSocket 経由でサーバーに送信できます。

let dataUrl = canvas.toDataURL('image/jpeg', 1.0);
socket.send(dataUrl);

サーバーは OpenCV と Python を使用して、受信した画像を処理および認識します。以下は、OpenCV を使用して画像から顔を切り取る単純な Python スクリプトです:

import cv2

def detect_faces(image):
    face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)
    return faces

def extract_faces(image_path):
    image = cv2.imread(image_path)
    faces = detect_faces(image)
    for i, (x, y, w, h) in enumerate(faces):
        face_image = image[y:y+h, x:x+w]
        cv2.imwrite('face_{}.jpg'.format(i), face_image)

ご覧のとおり、このスクリプトは OpenCV の顔検出器を使用して画像内の顔を検出し、顔を切り出し、ファイル「face_{}.jpg」に保存します。

サーバー側では、Python を使用して次の WebSocket プログラムを作成できます。

import asyncio
import cv2
import base64
import io

from aiohttp import web

async def index(request):
    return web.Response(text="WebSocket服务器已启动!")

async def websocket_handler(request):
    ws = web.WebSocketResponse()
    await ws.prepare(request)
    
    while True:
        data = await ws.receive()
        if data.type == web.WSMsgType.TEXT:
            await ws.send_str("接收到了一张新的图像,请稍候……")
            img_data = data.data[23:]  # 截取“data:image/jpeg;base64,”之后的数据
            try:
                img_bytes = base64.b64decode(img_data)
                img_stream = io.BytesIO(img_bytes)
                img_np = cv2.imdecode(np.frombuffer(img_stream.read(), np.uint8), cv2.IMREAD_UNCHANGED)
                
                # 图像识别代码
                # ...
                
                # 向客户端发送识别结果
                await ws.send_str("这是一个人脸。")
            except:
                await ws.send_str("出错了,无法处理该图像。")

        elif data.type == web.WSMsgType.ERROR:
            print("WebSocket连接发生错误! Code:{}".format(ws.exception()))
            break

    return ws

app = web.Application()
app.router.add_get('/', index)
app.router.add_get('/ws', websocket_handler)  # /ws是WebSocket路径,亦可为其他路径
web.run_app(app, port=8080)

WebSocket 接続が開かれると、websocket_handler 関数が自動的に実行され、クライアントからのメッセージをリッスンし続けます。新しい画像を受信すると、Base64 エンコーディングが OpenCV を使用して解析され、処理されます。データが処理された後、結果がクライアントに返されます。

これまでのところ、オンライン顔認識システムの導入に成功しています。完全なクライアント側とサーバー側のコードは次のようになります。

クライアント:

<html>
<head>
    <meta charset="UTF-8">
    <title>人脸识别</title>
</head>
<body>
    <h1 id="人脸识别">人脸识别</h1>
    <video width="320" height="240" autoplay></video>
    <canvas id="canvas" width="320" height="240"></canvas>
    <script>
        let socket = new WebSocket("ws://localhost:8080/");
        socket.onopen = function() {
            console.log("WebSocket连接已打开");
        };
        socket.onmessage = function(event) {
            console.log(event.data);
        };

        let video = document.querySelector('video');
        navigator.mediaDevices.getUserMedia({video: true})
            .then(function (stream) {
                video.srcObject = stream;
            });

        let canvas = document.getElementById('canvas');
        let context = canvas.getContext('2d');

        setInterval(function() {
            context.drawImage(video, 0, 0, canvas.width, canvas.height);
            let dataUrl = canvas.toDataURL('image/jpeg', 1.0);
            socket.send(dataUrl);
        }, 500);
    </script>
</body>
</html>

サーバー側:

import asyncio
import cv2
import base64
import io

from aiohttp import web

async def index(request):
    return web.Response(text="WebSocket服务器已启动!")

async def websocket_handler(request):
    ws = web.WebSocketResponse()
    await ws.prepare(request)
    
    while True:
        data = await ws.receive()
        if data.type == web.WSMsgType.TEXT:
            await ws.send_str("接收到了一张新的图像,请稍候……")
            img_data = data.data[23:]  # 截取“data:image/jpeg;base64,”之后的数据
            try:
                img_bytes = base64.b64decode(img_data)
                img_stream = io.BytesIO(img_bytes)
                img_np = cv2.imdecode(np.frombuffer(img_stream.read(), np.uint8), cv2.IMREAD_UNCHANGED)
                
                # 图像识别代码
                # ...
                
                # 向客户端发送识别结果
                await ws.send_str("这是一个人脸。")
            except:
                await ws.send_str("出错了,无法处理该图像。")

        elif data.type == web.WSMsgType.ERROR:
            print("WebSocket连接发生错误! Code:{}".format(ws.exception()))
            break

    return ws

app = web.Application()
app.router.add_get('/', index)
app.router.add_get('/ws', websocket_handler)
web.run_app(app, port=8080)

この記事が WebSocket と JavaScript の使用方法の理解に役立つことを願っています。オンライン顔認証システムを実装し、実現可能なシステムを迅速に構築します。

以上がWebSocket と JavaScript を使用してオンライン顔認識システムを実装する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
JavaScriptの起源:その実装言語の調査JavaScriptの起源:その実装言語の調査Apr 29, 2025 am 12:51 AM

JavaScriptは1995年に発信され、Brandon Ikeによって作成され、言語をCに実現しました。 2。JavaScriptのメモリ管理とパフォーマンスの最適化は、C言語に依存しています。 3. C言語のクロスプラットフォーム機能は、さまざまなオペレーティングシステムでJavaScriptを効率的に実行するのに役立ちます。

舞台裏:JavaScriptをパワーする言語は何ですか?舞台裏:JavaScriptをパワーする言語は何ですか?Apr 28, 2025 am 12:01 AM

JavaScriptはブラウザとnode.js環境で実行され、JavaScriptエンジンに依存してコードを解析および実行します。 1)解析段階で抽象的構文ツリー(AST)を生成します。 2)ASTをコンパイル段階のバイトコードまたはマシンコードに変換します。 3)実行段階でコンパイルされたコードを実行します。

PythonとJavaScriptの未来:傾向と予測PythonとJavaScriptの未来:傾向と予測Apr 27, 2025 am 12:21 AM

PythonとJavaScriptの将来の傾向には、1。Pythonが科学コンピューティングの分野での位置を統合し、AI、2。JavaScriptはWebテクノロジーの開発を促進します。どちらもそれぞれのフィールドでアプリケーションシナリオを拡大し続け、パフォーマンスをより多くのブレークスルーを行います。

Python vs. JavaScript:開発環境とツールPython vs. JavaScript:開発環境とツールApr 26, 2025 am 12:09 AM

開発環境におけるPythonとJavaScriptの両方の選択が重要です。 1)Pythonの開発環境には、Pycharm、Jupyternotebook、Anacondaが含まれます。これらは、データサイエンスと迅速なプロトタイピングに適しています。 2)JavaScriptの開発環境には、フロントエンドおよびバックエンド開発に適したnode.js、vscode、およびwebpackが含まれます。プロジェクトのニーズに応じて適切なツールを選択すると、開発効率とプロジェクトの成功率が向上する可能性があります。

JavaScriptはCで書かれていますか?証拠を調べるJavaScriptはCで書かれていますか?証拠を調べるApr 25, 2025 am 12:15 AM

はい、JavaScriptのエンジンコアはCで記述されています。1)C言語は、JavaScriptエンジンの開発に適した効率的なパフォーマンスと基礎となる制御を提供します。 2)V8エンジンを例にとると、そのコアはCで記述され、Cの効率とオブジェクト指向の特性を組み合わせて書かれています。3)JavaScriptエンジンの作業原理には、解析、コンパイル、実行が含まれ、C言語はこれらのプロセスで重要な役割を果たします。

JavaScriptの役割:WebをインタラクティブでダイナミックにするJavaScriptの役割:WebをインタラクティブでダイナミックにするApr 24, 2025 am 12:12 AM

JavaScriptは、Webページのインタラクティブ性とダイナミズムを向上させるため、現代のWebサイトの中心にあります。 1)ページを更新せずにコンテンツを変更できます。2)Domapiを介してWebページを操作する、3)アニメーションやドラッグアンドドロップなどの複雑なインタラクティブ効果、4)ユーザーエクスペリエンスを改善するためのパフォーマンスとベストプラクティスを最適化します。

CおよびJavaScript:接続が説明しましたCおよびJavaScript:接続が説明しましたApr 23, 2025 am 12:07 AM

CおよびJavaScriptは、WebAssemblyを介して相互運用性を実現します。 1)CコードはWebAssemblyモジュールにコンパイルされ、JavaScript環境に導入され、コンピューティングパワーが強化されます。 2)ゲーム開発では、Cは物理エンジンとグラフィックスレンダリングを処理し、JavaScriptはゲームロジックとユーザーインターフェイスを担当します。

Webサイトからアプリまで:JavaScriptの多様なアプリケーションWebサイトからアプリまで:JavaScriptの多様なアプリケーションApr 22, 2025 am 12:02 AM

JavaScriptは、Webサイト、モバイルアプリケーション、デスクトップアプリケーション、サーバー側のプログラミングで広く使用されています。 1)Webサイト開発では、JavaScriptはHTMLおよびCSSと一緒にDOMを運用して、JQueryやReactなどのフレームワークをサポートします。 2)ReactNativeおよびIonicを通じて、JavaScriptはクロスプラットフォームモバイルアプリケーションを開発するために使用されます。 3)電子フレームワークにより、JavaScriptはデスクトップアプリケーションを構築できます。 4)node.jsを使用すると、JavaScriptがサーバー側で実行され、高い並行リクエストをサポートします。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール