ホームページ >テクノロジー周辺機器 >AI >AI サイバー防御の需要が浮き彫りになり、高度なランサムウェア キャンペーンによる圧力の高まり
Deep Instinct の最高情報責任者である Carl Frogit 氏はインタビューで、2024 年度予算の主要な焦点がランサムウェア保護テクノロジーに移ると述べました。彼は、人工知能、特にディープラーニングがビジネス プロセスに大幅に統合され、ワークフローが自動化され、職場エクスペリエンスが向上すると予想しています。
最新のデータは Deep Instinct からのもので、ランサムウェアの被害者の総数は 2023 年までに急速に増加し、驚くべきことに 2023 年までにさらに多くの被害者が発生することがわかりました。今年上半期のランサムウェア攻撃の割合は、2022 年の全体よりも増加しています。この増加傾向についてのメディア報道に加えて、FS-ISAC のような評判の高い非営利団体もこの傾向の問題点を認めており、これは進化する脅威に対抗するための現在のアプローチが不適切であることを示しています。ランサムウェアの出現により、当初の「検出して対応する」アプローチが変化し、新しい亜種の開発に追いつくことができなくなりました。その結果、被害者の数は増加の一途をたどっています。この課題に対処するには、戦術を再度変更する必要があります。
攻撃者の手法は変化し、ランサムウェア攻撃は、今年同様のことが起こったのと同様に、多数の被害者に同時に影響を与える大規模なキャンペーンとして実行されています。 Zimbra と MOVEit のエクスプロイト。悪意のある者による AI の急速な導入により、これまで以上に洗練されたマルウェアが継続的に進化することが予想されます。
AI の高度な機能により、ランサムウェアやその他のサイバー攻撃を検出して対応するだけでなく、回避できるようになりました。既存の証拠は、対応だけではもはや十分ではないことを示しており、AI を活用してインフラストラクチャ、ストレージ、ビジネス アプリケーションに予防機能を組み込む、予防第一の哲学に立ち返る必要があることを示しています。特にディープ ラーニングなど、より高度な形式の AI を活用することで、ランサムウェアや脅威に対抗する方法です。
ディープ ラーニングは、ランサムウェアの脅威の特定と軽減において標準的な機械学習モデルとどのように異なりますか?
デジタル ライブラリはニューラル ネットワーク上に構築されており、他の方法と比べて、その「頭脳」は、生データを通じて継続的に自身をトレーニングします。深層学習モデルは悪意のあるファイルの構成要素を理解するため、予測防止ベースのセキュリティ プログラムを実装および展開して、将来の悪意のある動作を予測し、未知の脅威、ランサムウェア、ゼロデイ攻撃を検出して防止できます。ビジネスとそのサイバーセキュリティ運用にデジタル ライブラリ ベースのソリューションを使用することには大きな利点があります。まず、機械学習ベースのソリューションと比較して、このソリューションによる既知および未知のマルウェアの継続的な検出は非常に効率的であり、誤検知率が非常に低くなります。ディープ ラーニングは、この効果を維持するために年に 1 ~ 2 回更新するだけで済みます。また、クラウド分析を必要とせず、継続的なクラウド検索やインテリジェンスの共有を必要とせずに独立して実行されるため、高速でプライバシーに配慮しています
ディープ ラーニング テクノロジーはどのようにして誤検知を削減できるのでしょうか?また、企業のコスト削減に対する潜在的な影響は何ですか?
セキュリティ オペレーション センター (SOC) チームには、従来の方法で調査する必要があるアラートと潜在的なセキュリティ脅威が殺到しています。従来のウイルス対策ソリューションなどの学習ツールでは、ノイズではなくどのアラートが本当に調査する価値があるかをチームが判断することが困難になります。これには多くの理由がありますが、「検出して応答する」という理念は、大量のデータを収集する必要があることを意味し、保存と維持に費用がかかり、SOC メンバーなら誰もが言うように、誤検知率が非常に高くなります。
ディープラーニングを活用したソリューションは、非常に高い精度と非常に低い誤警報率でこの問題を解決することに成功し、これにより SOC チームは真に実用的なアラートと、より迅速かつ効率的に脅威を特定することに集中できるようになります。実際の脅威に時間を費やすことで、脅威に対する態勢を最適化し、より積極的な脅威ハンティングに取り組むことができ、組織のリスク態勢が大幅に改善されます。
業界は、保護を提供するために、エンドポイント検出と応答 (EDR) などの時代遅れの事後対応型ソリューションに依存してきました。 EDR ツールはフォローアップの観点からは依然として有用ですが、企業がこれらのツールにのみ投資する場合、企業は「侵害を想定」し、修復作業が成功することを期待しています。明らかに、このアプローチは、脅威を取り巻く状況の変化により、毎年急速に失敗しています。 Signature ソリューションが最終的に失敗し、EDR に移行したのと同じように、EDR も同じ限界点に達しています。その結果、業界全体がセキュリティに対して、より高度で積極的なアプローチをとる必要があります。
実際、IDC は最近、エンドポイント保護が何らかの形で復活すると予測しました。私たちは EDR 後のハネムーン期にあり、予測防御が完全に効果を発揮し、ネットワークに侵入する前に攻撃を阻止します。
ますます巧妙化する AI の脅威に対抗する唯一の方法は、「侵害されたらどうしよう」という考え方から、サイバーセキュリティに対するプロアクティブで予防的なアプローチに移行することです。セキュリティ チームは、AI の課題に対処するために時代遅れのツールだけに頼ることはできません。代わりに、企業は、進化する AI の脅威の量と速度を遅らせるために、ディープラーニング モデルに基づくネイティブのサイバーセキュリティ ソリューションを採用する必要があります。 2024 年までに、企業は予算に余裕を持って高度な AI テクノロジーを自社のサイバーセキュリティ戦略に統合し、セキュリティの回復力を高め、攻撃が成功する可能性を減らすようになるでしょう。
あなたは、その AI、特に深層学習モデルをどのように予測しますか? 、来年はビジネス プロセスへの統合がさらに進むでしょうか?
さらに、AI が完全に統合されると、トラブルシューティング、機能停止、セキュリティ インシデントなどの職場のタスクの多くが AI によって自動化されるため、若い世代は同じような実践的な経験を持たなくなります。リーダーにとっては、労働力の基礎を学ぶ機会が奪われたときに、どうやって人々のスキルやキャリアを開発し、形成し続けることができるのかという疑問が生じるでしょう。私はこの質問は来年末までに答えられると期待しています。
以上がAI サイバー防御の需要が浮き彫りになり、高度なランサムウェア キャンペーンによる圧力の高まりの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。