今天讲讲怎么用sqoop将Hbase或者Hive的东西导出到mysql。不过事先要告诉大家
目前sqoop没有办法把数据直接从Hbase导出到mysql。必须要通过Hive建立2个表,一个外部表是基于这个Hbase表的,另一个是单纯的基于hdfs的hive原生表,然后把外部表的数据导入到原生表(临时),然后通过hive将临时表里面的数据导出到mysql
数据准备
mysql建立空表
CREATE TABLE `employee` ( `rowkey` int(11) NOT NULL, `id` int(11) NOT NULL, `name` varchar(20) NOT NULL, PRIMARY KEY (`id`) ) ENGINE=MyISAM DEFAULT CHARSET=utf8;
注意:因为大家习惯性的把hive表用于映射Hbase的rowkey的字段命名为key,所以在建立mysql的table的时候有可能也建立对应的key字段,但是key是mysql的保留字,会导致insert语句无法插入的问题
Hbase建立employee表
建立employee表,并插入数据hbase(main):005:0> create 'employee','info' 0 row(s) in 0.4740 seconds => Hbase::Table - employee hbase(main):006:0> put 'employee',1,'info:id',1 0 row(s) in 0.2080 seconds hbase(main):008:0> scan 'employee' ROW COLUMN+CELL 1 column=info:id, timestamp=1417591291730, value=1 1 row(s) in 0.0610 seconds hbase(main):009:0> put 'employee',1,'info:name','peter' 0 row(s) in 0.0220 seconds hbase(main):010:0> scan 'employee' ROW COLUMN+CELL 1 column=info:id, timestamp=1417591291730, value=1 1 column=info:name, timestamp=1417591321072, value=peter 1 row(s) in 0.0450 seconds hbase(main):011:0> put 'employee',2,'info:id',2 0 row(s) in 0.0370 seconds hbase(main):012:0> put 'employee',2,'info:name','paul' 0 row(s) in 0.0180 seconds hbase(main):013:0> scan 'employee' ROW COLUMN+CELL 1 column=info:id, timestamp=1417591291730, value=1 1 column=info:name, timestamp=1417591321072, value=peter 2 column=info:id, timestamp=1417591500179, value=2 2 column=info:name, timestamp=1417591512075, value=paul 2 row(s) in 0.0440 seconds
建立Hive外部表
hive 有分为原生表和外部表,原生表是以简单文件方式存储在hdfs里面,外部表依赖别的框架,比如Hbase,我们现在建立一个依赖于我们刚刚建立的employee hbase表的hive 外部表hive> CREATE EXTERNAL TABLE h_employee(key int, id int, name string) > STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' > WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key, info:id,info:name") > TBLPROPERTIES ("hbase.table.name" = "employee"); OK Time taken: 0.324 seconds hive> select * from h_employee; OK 1 1 peter 2 2 paul Time taken: 1.129 seconds, Fetched: 2 row(s)
建立Hive原生表
这个hive原生表只是用于导出的时候临时使用的,所以取名叫 h_employee_export,字段之间的分隔符用逗号CREATE TABLE h_employee_export(key INT, id INT, name STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\054';
我们去看下实际存储的文本文件是什么样子的
$ hdfs dfs -cat /user/hive/warehouse/h_employee_export/000000_0 1,1,peter 2,2,paul
源Hive表导入数据到临时表
第一步先将数据从 h_employee(基于Hbase的外部表)导入到 h_employee_export(原生Hive表)
hive> insert overwrite table h_employee_export select * from h_employee;
hive> select * from h_employee_export; OK 1 1 peter 2 2 paul Time taken: 0.359 seconds, Fetched: 2 row(s)
我们去看下实际存储的文本文件长什么样子
$ hdfs dfs -cat /user/hive/warehouse/h_employee_export/000000_0 1,1,peter 2,2,paul
从Hive导出数据到mysql
$ sqoop export --connect jdbc:mysql://localhost:3306/sqoop_test --username root --password root --table employee --m 1 --export-dir /user/hive/warehouse/h_employee_export/ Warning: /usr/lib/sqoop/../hive-hcatalog does not exist! HCatalog jobs will fail. Please set $HCAT_HOME to the root of your HCatalog installation. Warning: /usr/lib/sqoop/../accumulo does not exist! Accumulo imports will fail. Please set $ACCUMULO_HOME to the root of your Accumulo installation. 14/12/05 08:49:35 INFO sqoop.Sqoop: Running Sqoop version: 1.4.4-cdh5.0.1 14/12/05 08:49:35 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead. 14/12/05 08:49:35 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset. 14/12/05 08:49:35 INFO tool.CodeGenTool: Beginning code generation 14/12/05 08:49:36 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `employee` AS t LIMIT 1 14/12/05 08:49:36 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `employee` AS t LIMIT 1 14/12/05 08:49:36 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /usr/lib/hadoop-mapreduce Note: /tmp/sqoop-wlsuser/compile/d16eb4166baf6a1e885d7df0e2638685/employee.java uses or overrides a deprecated API. Note: Recompile with -Xlint:deprecation for details. 14/12/05 08:49:39 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-wlsuser/compile/d16eb4166baf6a1e885d7df0e2638685/employee.jar 14/12/05 08:49:39 INFO mapreduce.ExportJobBase: Beginning export of employee 14/12/05 08:49:41 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar 14/12/05 08:49:43 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative 14/12/05 08:49:43 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative 14/12/05 08:49:43 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps 14/12/05 08:49:43 INFO client.RMProxy: Connecting to ResourceManager at hadoop01/192.111.78.111:8032 14/12/05 08:49:45 INFO input.FileInputFormat: Total input paths to process : 1 14/12/05 08:49:45 INFO input.FileInputFormat: Total input paths to process : 1 14/12/05 08:49:45 INFO mapreduce.JobSubmitter: number of splits:1 14/12/05 08:49:46 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1406097234796_0037 14/12/05 08:49:46 INFO impl.YarnClientImpl: Submitted application application_1406097234796_0037 14/12/05 08:49:46 INFO mapreduce.Job: The url to track the job: http://hadoop01:8088/proxy/application_1406097234796_0037/ 14/12/05 08:49:46 INFO mapreduce.Job: Running job: job_1406097234796_0037 14/12/05 08:49:59 INFO mapreduce.Job: Job job_1406097234796_0037 running in uber mode : false 14/12/05 08:49:59 INFO mapreduce.Job: map 0% reduce 0% 14/12/05 08:50:10 INFO mapreduce.Job: map 100% reduce 0% 14/12/05 08:50:10 INFO mapreduce.Job: Job job_1406097234796_0037 completed successfully 14/12/05 08:50:10 INFO mapreduce.Job: Counters: 30 File System Counters FILE: Number of bytes read=0 FILE: Number of bytes written=99761 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=166 HDFS: Number of bytes written=0 HDFS: Number of read operations=4 HDFS: Number of large read operations=0 HDFS: Number of write operations=0 Job Counters Launched map tasks=1 Data-local map tasks=1 Total time spent by all maps in occupied slots (ms)=8805 Total time spent by all reduces in occupied slots (ms)=0 Total time spent by all map tasks (ms)=8805 Total vcore-seconds taken by all map tasks=8805 Total megabyte-seconds taken by all map tasks=9016320 Map-Reduce Framework Map input records=2 Map output records=2 Input split bytes=144 Spilled Records=0 Failed Shuffles=0 Merged Map outputs=0 GC time elapsed (ms)=97 CPU time spent (ms)=1360 Physical memory (bytes) snapshot=167555072 Virtual memory (bytes) snapshot=684212224 Total committed heap usage (bytes)=148897792 File Input Format Counters Bytes Read=0 File Output Format Counters Bytes Written=0 14/12/05 08:50:10 INFO mapreduce.ExportJobBase: Transferred 166 bytes in 27.0676 seconds (6.1328 bytes/sec) 14/12/05 08:50:10 INFO mapreduce.ExportJobBase: Exported 2 records.
注意
在这段日志中有这样一句话
14/12/05 08:49:46 INFO mapreduce.Job: The url to track the job: http://hadoop01:8088/proxy/application_1406097234796_0037/
意思是你可以用浏览器访问这个地址去看下任务的执行情况,如果你的任务长时间卡主没结束就是出错了,可以去这个地址查看详细的错误日志
查看结果
mysql> select * from employee; +--------+----+-------+ | rowkey | id | name | +--------+----+-------+ | 1 | 1 | peter | | 2 | 2 | paul | +--------+----+-------+ 2 rows in set (0.00 sec) mysql>
导入成功

この記事では、MySQLのAlter Tableステートメントを使用して、列の追加/ドロップ、テーブル/列の名前の変更、列データ型の変更など、テーブルを変更することについて説明します。

記事では、証明書の生成と検証を含むMySQL用のSSL/TLS暗号化の構成について説明します。主な問題は、セルフ署名証明書のセキュリティへの影響を使用することです。[文字カウント:159]

記事では、MySQLで大規模なデータセットを処理するための戦略について説明します。これには、パーティション化、シャード、インデックス作成、クエリ最適化などがあります。

記事では、MySQLワークベンチやPHPMyAdminなどの人気のあるMySQL GUIツールについて説明し、初心者と上級ユーザーの機能と適合性を比較します。[159文字]

この記事では、ドロップテーブルステートメントを使用してMySQLのドロップテーブルについて説明し、予防策とリスクを強調しています。これは、バックアップなしでアクションが不可逆的であることを強調し、回復方法と潜在的な生産環境の危険を詳述しています。

記事では、外部キーを使用してデータベース内の関係を表すことで、ベストプラクティス、データの完全性、および避けるべき一般的な落とし穴に焦点を当てています。

この記事では、クエリパフォーマンスを強化するために、PostgreSQL、MySQL、MongoDBなどのさまざまなデータベースでJSON列にインデックスの作成について説明します。特定のJSONパスのインデックス作成の構文と利点を説明し、サポートされているデータベースシステムをリストします。

記事では、準備されたステートメント、入力検証、および強力なパスワードポリシーを使用して、SQLインジェクションおよびブルートフォース攻撃に対するMySQLの保護について説明します。(159文字)


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

メモ帳++7.3.1
使いやすく無料のコードエディター

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

ホットトピック



