検索
ホームページテクノロジー周辺機器AIAIが材料科学の革命をリード! Nature に掲載された Google DeepMind の最新研究は、220 万の新しい物質を予測することに成功しました

たった 1 つの AI を使用して、人類が発達するのに 800 年近くかかったという知識を獲得しました。

これは、Google DeepMind によって新たに研究された材料発見ツールであり、論文は Nature に掲載されました。

AIが材料科学の革命をリード! Nature に掲載された Google DeepMind の最新研究は、220 万の新しい物質を予測することに成功しました

この AI ツールだけで、彼らは 220 万 理論的に安定した新しい結晶材料を発見しました。これは、材料の安定性の予測精度を向上させるだけでなく、 50% から 80% まで、380,000 種類がテストされました。

AIが材料科学の革命をリード! Nature に掲載された Google DeepMind の最新研究は、220 万の新しい物質を予測することに成功しました

Google DeepMind は、28,000 の安定した物質が過去 10 年間で発見されただけであることを考えると、この研究はほぼ 800 年分の知識の蓄積に相当すると述べています。

AIが材料科学の革命をリード! Nature に掲載された Google DeepMind の最新研究は、220 万の新しい物質を予測することに成功しました

業界の専門家は、その急速な進歩に本当に目を見張るものです

フィナンシャル・タイムズ紙によると、MITのビルゲ・ユルディズ教授はこの研究について次のようにコメントしています。

無機結晶のこの膨大なデータベースには、クリーン エネルギーと環境問題の解決策を前進させるために発見されるのを待っている宝石がたくさんあるはずです。

現在、Zhihu でこのトピックが話題になっています:

AIが材料科学の革命をリード! Nature に掲載された Google DeepMind の最新研究は、220 万の新しい物質を予測することに成功しました

それでは、これはどのような AI ツールなのでしょうか?

新しいツール GNoME はどのようなものですか

この記事では、

GNoME (Graph Networks for Materials Exploration) という新しいツールを提案します。

GNoME のアーキテクチャはグラフ ニューラル ネットワーク (GNN) であり、結晶構造内の

原子 を表すためにノードが使用され、 結合関係 # を表すためにエッジが使用されます。結晶構造 ##。

AIが材料科学の革命をリード! Nature に掲載された Google DeepMind の最新研究は、220 万の新しい物質を予測することに成功しました その後、GNoME は、マテリアル プロジェクト、オープン量子材料データベース (OQMD) などを含む、一連の既知の安定した材料データ セットをトレーニングに使用しました。

このツールは、

アクティブ ラーニング

を通じて新しい資料を発見します。 まず、既知の安定した材料に基づいて候補構造が生成され、その後、GNoME がこれらの候補構造をスクリーニングします

AIが材料科学の革命をリード! Nature に掲載された Google DeepMind の最新研究は、220 万の新しい物質を予測することに成功しましたもちろん、GNoME は最初に構造をスクリーニングします。を直接使用することはできませんが、密度汎関数理論 (DFT) に基づいて構造の安定性を検証する必要があります。

その後、これらの検証された構造は、予測機能を向上させるための新しいトレーニング データとして再び GNoME に供給されます。 GNoME は最終的に 220 万個以上の新しい安定した結晶構造を発見しました。これはこのアプローチの結果です

同時に、特定の一般化能力により、5 つ以上の固有の要素を含む構造を正確に予測することもできます。

AIが材料科学の革命をリード! Nature に掲載された Google DeepMind の最新研究は、220 万の新しい物質を予測することに成功しました

それでは、新しく発見された 220 万個の安定した結晶材料は何をするのでしょうか?

AIが材料科学の革命をリード! Nature に掲載された Google DeepMind の最新研究は、220 万の新しい物質を予測することに成功しました220万種類の結晶は何に使われているのですか?

最も直観的な見方は、新エネルギー電池(太陽電池など)、超伝導体の分野での進歩が期待されるということです。 、チップス。

GNoME は現在、理論的に安定した結晶材料しか計算できませんが、実験合成が成功すると、その特性を評価できるようになります。

これらの新しく発見された安定した結晶材料は、超伝導、強誘電体、オプトエレクトロニクスなどの変換を受ける予定です。

#レポートによると、研究者らは、GNoME で計算されたクリスタルが合成できることを証明するために、実験室で 736 個の材料を合成しました。

さらに、合成されたマテリアルは、新しいマテリアルの設計のガイダンスとして、または他の AI モデルをトレーニングおよび最適化するための新しいデータセットとして使用することもできます。

たとえば、カリフォルニア大学バークレー校とローレンス・バークレー国立研究所は、これらの発見された物質を実験研究の一部として使用しており、その論文はNatureにも掲載されました。

チームは A-Lab を構築し、計算された 58 種類の材料から 41 種類の化合物の合成に成功し、 70% 以上の成功率を達成しました。

この研究に関して、一部のネチズンはすでに薬局の進歩などの物質の発展の見通しを想像しています:

AIが材料科学の革命をリード! Nature に掲載された Google DeepMind の最新研究は、220 万の新しい物質を予測することに成功しました

一部のネチズンも波を起こしています熱狂的な LK-99 は徐々に落ち着きました。材料科学が戻ってきました。

AIが材料科学の革命をリード! Nature に掲載された Google DeepMind の最新研究は、220 万の新しい物質を予測することに成功しました

一部の人々は、これらの発見された物質が人類全体に有益であることを望んでいます

AIが材料科学の革命をリード! Nature に掲載された Google DeepMind の最新研究は、220 万の新しい物質を予測することに成功しました

これらの AI はどう思いますか予測材料はまだ良いのですが、どのような分野に応用できますか?

以上がAIが材料科学の革命をリード! Nature に掲載された Google DeepMind の最新研究は、220 万の新しい物質を予測することに成功しましたの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
LLMSでのツール呼び出しLLMSでのツール呼び出しApr 14, 2025 am 11:28 AM

大規模な言語モデル(LLM)は人気が急増しており、ツールコール機能は単純なテキスト生成を超えて機能を劇的に拡大しています。 これで、LLMSは動的なUI作成や自律的なaなどの複雑な自動化タスクを処理できます。

ADHDゲーム、ヘルスツール、AIチャットボットがグローバルヘルスを変える方法ADHDゲーム、ヘルスツール、AIチャットボットがグローバルヘルスを変える方法Apr 14, 2025 am 11:27 AM

ビデオゲームは不安を緩和したり、ADHDの子供を焦点を合わせたり、サポートしたりできますか? ヘルスケアの課題が世界的に急増しているため、特に若者の間では、イノベーターはありそうもないツールであるビデオゲームに目を向けています。現在、世界最大のエンターテイメントインダスの1つです

AIに関する国連入力:勝者、敗者、および機会AIに関する国連入力:勝者、敗者、および機会Apr 14, 2025 am 11:25 AM

「歴史は、技術の進歩が経済成長を促進する一方で、それ自体が公平な所得分布を確保したり、包括的な人間開発を促進したりしないことを示しています」とUNCTADの事務総長であるRebeca Grynspanは前文で書いています。

生成AIを介した交渉スキルを学ぶ生成AIを介した交渉スキルを学ぶApr 14, 2025 am 11:23 AM

簡単な、Generative AIを交渉の家庭教師およびスパーリングパートナーとして使用してください。 それについて話しましょう。 革新的なAIブレークスルーのこの分析は、最新のAIに関する私の進行中のフォーブス列のカバレッジの一部であり、特定と説明を含む

テッドは、Openai、Google、Metaが法廷に向かい、自分自身とセルフィーから明らかにしますテッドは、Openai、Google、Metaが法廷に向かい、自分自身とセルフィーから明らかにしますApr 14, 2025 am 11:22 AM

バンクーバーで開催されたTED2025会議は、昨日4月11日の第36版を締めくくりました。サム・アルトマン、エリック・シュミット、パーマー・ラッキーを含む60か国以上の80人の講演者が登場しました。テッドのテーマ「人類が再考された」は、仕立てられたものでした

ジョセフ・スティグリッツは、AI独占権の中で迫り来る不平等を警告しているジョセフ・スティグリッツは、AI独占権の中で迫り来る不平等を警告しているApr 14, 2025 am 11:21 AM

ジョセフ・スティグリッツは、2001年にノーベル経済賞を受賞した経済学者であり、2001年にノーベル経済賞を受賞しています。スティグリッツは、AIが既存の不平等を悪化させ、いくつかの支配的な企業の手に統合した力を悪化させ、最終的に経済を損なうと仮定しています。

グラフデータベースとは何ですか?グラフデータベースとは何ですか?Apr 14, 2025 am 11:19 AM

グラフデータベース:関係を通じてデータ管理に革命をもたらす データが拡大し、その特性がさまざまなフィールドで進化するにつれて、グラフデータベースは、相互接続されたデータを管理するための変換ソリューションとして浮上しています。伝統とは異なり

LLMルーティング:戦略、テクニック、およびPythonの実装LLMルーティング:戦略、テクニック、およびPythonの実装Apr 14, 2025 am 11:14 AM

大規模な言語モデル(LLM)ルーティング:インテリジェントタスク分布によるパフォーマンスの最適 LLMSの急速に進化する風景は、それぞれが独自の長所と短所を備えた多様なモデルを提供します。 創造的なコンテンツGenに優れている人もいます

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。