拡散モデルの導入により、テキスト生成ビデオ技術の開発が促進されました。しかし、これらの方法は多くの場合、計算コストが高く、滑らかなオブジェクトの動きのビデオを実現するのが困難です。
これらの問題に対処するために、深セン先進技術研究所、中国科学院、中国科学院大学、VIVO人工知能研究所の研究者は共同で、テキストビデオを生成することができるGPT4Motionと呼ばれる新しいフレームワークを提案しました。トレーニング。 GPT4Motion は、GPT などの大規模な言語モデルの計画機能、Blender ソフトウェアが提供する物理シミュレーション機能、拡散モデルのテキスト生成機能を組み合わせ、ビデオ合成の品質を大幅に向上させることを目的としています。
##プロジェクトリンク: https://gpt4motion.github.io/
- 紙のリンク: https:// /arxiv.org/pdf/2311.12631.pdf
- コードリンク: https://github.com/jiaxilv/GPT4Motion
- GPT4Motion は GPT-4 を使用して、ユーザー入力テキスト プロンプトに基づいて Blender スクリプトを生成します。 Blender の物理エンジンを活用して基本的なシーン コンポーネントを作成し、それらを連続的なクロスフレーム モーションとしてカプセル化します。これらのコンポーネントは拡散モデルに入力され、テキスト プロンプトに一致するビデオを生成します。
実験結果は、GPT4Motion がモーションの一貫性とエンティティの一貫性を維持しながら、高品質のビデオを効率的に生成できることを示しています。 GPT4Motion は生成されたビデオをよりリアルにするために物理エンジンを使用していることに注意してください。これにより、テキスト生成ビデオに新しい視点が提供されます
まず、テキスト プロンプトの入力など、GPT4Motion の生成効果を見てみましょう。 「そよ風」、「白いTシャツが風になびいている」、「白いTシャツが強い風にはためいている」。風の強さが異なるため、GPT4Motion によって生成されたビデオ内の白い T シャツのはためきの振幅も異なります。
液体の場合流れの形、ビデオでもよくわかります:
空中で回転して落ちるバスケットボール:
方法の紹介
この研究の目標は、いくつかの基本的な身体動作シーンに対するユーザーのプロンプトに基づいて、身体特性に適合するビデオを生成することです。物理的特性は、多くの場合、オブジェクトの材質に関連します。研究者らは、日常生活でよく使われる3つの物体素材、1)力が加わっても形状を変化させずに維持できる硬い物体、2)柔らかくてはためきやすいという特徴を持つ布地、3)液体などの液体のシミュレーションに焦点を当てています。連続的かつ変形可能な動きを示します。
さらに、研究者らは、衝突 (物体間の直接衝突)、風の影響 (気流によって引き起こされる動き)、流れ (連続的に一方向に移動します)。これらの物理シナリオをシミュレートするには、多くの場合、古典力学、流体力学、その他の物理学の知識が必要です。テキスト生成ビデオに焦点を当てた現在の普及モデルでは、トレーニングを通じてこれらの複雑な物理知識を取得することが困難であるため、物理特性に準拠したビデオを作成できません
GPT4Motion の利点は、生成されたビデオがユーザー入力プロンプトと一致しているだけでなく、物理的にも正しいこと。 GPT-4 のセマンティック理解とコード生成機能により、ユーザー プロンプトを Blender の Python スクリプトに変換できます。これにより、Blender の内蔵物理エンジンを駆動して、対応する物理シーンをシミュレートできます。さらに、この調査では ControlNet も使用され、Blender シミュレーションの動的な結果を入力として受け取り、拡散モデルがビデオをフレームごとに生成するようにガイドしました。 GPT-4 の活用 シミュレーション操作のために Blender を起動します
研究者らは、GPT-4 は Blender の Python API をある程度理解していますが、ユーザー プロンプトに基づいて Blender の Python スクリプトを生成する機能がまだ不足していることに気づきました。一方で、単純な 3D モデル (バスケットボールなど) さえも Blender で直接作成するように GPT-4 に要求するのは、気が遠くなる作業のように思えます。一方、Blender の Python API はリソースが少なく、API バージョンの更新が早いため、GPT-4 では特定の機能を誤用したり、バージョンの違いによるエラーが発生しやすくなります。これらの問題を解決するために、この研究では次の解決策を提案しています: 図 3 は、この研究によって GPT-4 用に設計された一般的なプロンプト テンプレートを示しています。これには、カプセル化された Blender 関数、外部ツール、ユーザー コマンドが含まれます。研究者らはテンプレートで仮想世界のサイズ基準を定義し、カメラの位置と視点に関する情報を提供しました。この情報は、GPT-4 が 3 次元空間のレイアウトをよりよく理解するのに役立ちます。次に、ユーザーによるプロンプト入力に基づいて対応する命令が生成され、GPT-4 が対応する Blender Python スクリプトを生成するように指示されます。最後に、このスクリプトを通じて、Blender はオブジェクトのエッジと奥行きをレンダリングし、画像シーケンスとして出力します。 #内容を書き直しました: 物理法則に従ったビデオの作成 この研究は、テキストコンテンツと一致し、ユーザーが提供したキューと、Blender によって提供される対応する物理的な動きの条件に基づいて、視覚的に現実的なビデオを生成することを目的としています。この目的を達成するために、この研究では拡散モデル XL (SDXL) を採用して生成タスクを完了し、それを改善しました。 ## 図 4 は、バスケットボールの行方と衝突を含む、3 つのプロンプトの下で GPT4Motion によって生成されたバスケットボール スポーツ ビデオを示しています。図 4 の左側では、バスケットボールが回転する際に非常に現実的なテクスチャを維持し、地面との衝突後の跳ね返り動作を正確に再現しています。図 4 の中央部分は、この方法がバスケットボールの数を正確に制御し、複数のバスケットボールが着地したときに発生する衝突と跳ね返りを効果的に生成できることを示しています。驚くべきことに、図 4 の右側に示すように、ユーザーがカメラに向かってバスケットボールを投げるように要求すると、GPT-4 は生成されたスクリプト内のバスケットボールの落下時間に基づいて必要な初速度を計算し、それによってリアルなビジュアルを実現します。効果。これは、GPT4Motion を GPT-4 で習得した物理学の知識と組み合わせて、風になびく布の生成されたビデオ コンテンツを制御できることを示しています。図 5 と 6 は、風の影響下で移動する布を生成する GPT4Motion の機能を示しています。 GPT4Motion はシミュレーションに既存の物理エンジンを活用し、さまざまな風力の下で波を生成できます。図 5 は、旗を振って生成された結果を示しています。この旗には、さまざまな風の状況で波紋や波の複雑なパターンが表示されます。図 6 は、さまざまな風力下における不規則な布地オブジェクト (T シャツ) の動きを示しています。伸縮性や重量などの生地の物理的特性の影響により、T シャツは揺れたりねじれたり、しわが顕著に変化します。
図 7 は、さまざまな粘度の水をマグカップに注ぐ様子を示す 3 つのビデオを示しています。水の粘度が低いと、流れる水がカップ内の水と衝突して合流し、複雑な乱流現象が形成されます。粘度が増加すると、流れが遅くなり、液体が互いに付着し始めます 図 1 では、GPT4Motion が他のベースライン手法と視覚的に比較されています。ベースライン方法の結果がユーザーのプロンプトと一致しないことは明らかです。 DirecT2V と Text2Video-Zero にはテクスチャの忠実度とモーションの一貫性に欠陥がありますが、AnimateDiff と ModelScope はビデオの滑らかさを改善しますが、テクスチャの一貫性とモーションの忠実度にはまだ改善の余地があります。これらの方法と比較して、GPT4Motion はバスケットボールが床に衝突した後に落下したり跳ね返ったりする際に滑らかなテクスチャの変化を生成でき、より現実的に見えます。図 8 (最初の行) では、AnimateDiff と Text2Video-Zero で生成されたビデオには旗にアーティファクトや歪みがあり、ModelScope と DirecT2V では風になびく旗のグラデーションをスムーズに生成できません。ただし、図 5 の中央に示すように、GPT4Motion によって生成されたビデオでは、重力や風の影響を受けて旗のしわや波紋が連続的に変化する様子がわかります。 図 8 の 2 行目に示すように、すべてのベースラインの結果はユーザー プロンプトと一致しません。 AnimateDiff と ModelScope のビデオは水の流れの変化を反映していますが、カップに注がれる水の物理的効果を捉えることはできません。一方、Text2VideoZero と DirecT2V によって生成されたビデオは、絶えず揺れるカップを作成しました。対照的に、図 7 (左) に示すように、GPT4Motion によって生成されたビデオは、水流がマグカップに衝突するときの撹拌を正確に表しており、その効果はより現実的です。読者 研究の詳細については、元の論文を読むことができます
##実験結果物理特性の制御
ベースライン法との比較
以上がGPT-4+ 拡散モデルは物理エンジンと組み合わせることで、現実的で一貫性のある合理的なビデオを生成します。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Apollo Researchの新しいレポートによると、高度なAIシステムの未確認の内部展開は、重大なリスクをもたらします。 主要なAI企業の間で一般的なこの監視の欠如は、Uncontに及ぶ潜在的な壊滅的な結果を可能にします

従来の嘘検出器は時代遅れです。リストバンドで接続されたポインターに依存すると、被験者のバイタルサインと身体的反応を印刷する嘘発見器は、嘘を識別するのに正確ではありません。これが、嘘の検出結果が通常裁判所で採用されない理由ですが、多くの罪のない人々が投獄されています。 対照的に、人工知能は強力なデータエンジンであり、その実用的な原則はすべての側面を観察することです。これは、科学者がさまざまな方法で真実を求めるアプリケーションに人工知能を適用できることを意味します。 1つのアプローチは、嘘発見器のように尋問されている人の重要な符号応答を分析することですが、より詳細かつ正確な比較分析を行います。 別のアプローチは、言語マークアップを使用して、人々が実際に言うことを分析し、論理と推論を使用することです。 ことわざにあるように、ある嘘は別の嘘を繁殖させ、最終的に

イノベーションの先駆者である航空宇宙産業は、AIを活用して、最も複雑な課題に取り組んでいます。 近代的な航空の複雑さの増加は、AIの自動化とリアルタイムのインテリジェンス機能を必要とします。

ロボット工学の急速な発展により、私たちは魅力的なケーススタディをもたらしました。 NoetixのN2ロボットの重量は40ポンドを超えており、高さは3フィートで、逆流できると言われています。 UnitreeのG1ロボットの重量は、N2のサイズの約2倍で、高さは約4フィートです。また、競争に参加している多くの小さなヒューマノイドロボットがあり、ファンによって前進するロボットさえあります。 データ解釈 ハーフマラソンは12,000人以上の観客を惹きつけましたが、21人のヒューマノイドロボットのみが参加しました。政府は、参加しているロボットが競争前に「集中トレーニング」を実施したと指摘したが、すべてのロボットが競争全体を完了したわけではない。 チャンピオン - 北京ヒューマノイドロボットイノベーションセンターによって開発されたティアンゴニ

人工知能は、現在の形式では、真にインテリジェントではありません。既存のデータを模倣して洗練するのに熟達しています。 私たちは人工知能を作成するのではなく、人工的な推論を作成しています。情報を処理するマシン、人間は

レポートでは、更新されたインターフェイスがGoogle Photos Androidバージョン7.26のコードに隠されていることがわかり、写真を見るたびに、新しく検出された顔のサムネイルの行が画面の下部に表示されます。 新しいフェイシャルサムネイルには名前タグが欠落しているため、検出された各人に関する詳細情報を見るには、個別にクリックする必要があると思います。今のところ、この機能は、Googleフォトが画像で見つけた人々以外の情報を提供しません。 この機能はまだ利用できないため、Googleが正確にどのように使用するかはわかりません。 Googleはサムネイルを使用して、選択した人のより多くの写真を見つけるためにスピードアップしたり、編集して個人を選択するなど、他の目的に使用することもできます。待って見てみましょう。 今のところ

補強能力は、人間のフィードバックに基づいて調整するためにモデルを教えることにより、AI開発を揺さぶりました。それは、監督された学習基盤と報酬ベースの更新をブレンドして、より安全で、より正確に、そして本当に助けます

科学者は、彼らの機能を理解するために、人間とより単純なニューラルネットワーク(C. elegansのものと同様)を広く研究してきました。 ただし、重要な疑問が生じます。新しいAIと一緒に効果的に作業するために独自のニューラルネットワークをどのように適応させるのか


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

ホットトピック









